Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Condensation particle counter






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The schematic of a condensation particle counter, operated by diffusional thermal cooling. Drawn according to the description at http://www.cas.manchester.ac.uk/restools/instruments/aerosol/cpc/. Notation: 1 – air inlet; 2 – porous material block, which is heated to saturator temperature, 3 – working fluid in reservoir, 4 – condenser, 5 – focusing nozzle, 6 – laser-based counter, 7 – air pump, 8 – air exhaust.
Four small pieces of machinery connected by clear tubes sitting on a table
Equipment used for area sampling of airborne nanomaterials.[1] The instruments shown here include a condensation particle counter, aerosol photometer, and two air sampling pumps for filter-based analysis.

Acondensation particle counterorCPC is a particle counter that detects and counts aerosol particles by first enlarging them by using the particles as nucleation centers to create droplets in a supersaturated gas.[2]

Three techniques have been used to produce nucleation:

The most usually used (also the most efficient) method is cooling by thermal diffusion. Most abundantly used working fluid is n-butanol; during last years water is also encountered in this use.[4]

Condensation particle counters are able to detect particles with dimensions from 2 nm and larger. This is of special importance because particles sized down from 50 nm are generally undetectable with conventional optical techniques. Usually the supersaturation is ca. 100…200 % in condensation chamber, despite the fact that heterogeneous nucleation (droplet growth on surface of a suspended solid particle) can occur at supersaturation as small as 1%. The greater vapour content is needed because, according to surface science laws, the vapour pressure over a convex surface is less than over a plane, thus greater content of vapor in air is required to meet actual supersaturation criteria. This amount grows (vapor pressure decreases) along with decrease in particle size, the critical diameter for which condensation can occur at the present saturation level is called Kelvin diameter. The supersaturation level must, however, be small enough to prevent homogeneous nucleation (when liquid molecules collide so often that they form clusters – stable enough to ensure further growth is possible), which will produce false counts. This usually starts at ca. 300% supersaturation.[4]

On the right, a diffusional thermal cooling CPC is shown in operation. In order to ensure a high vapour content, the working liquid is in contact with a hollow block of porous material that is heated. Then the humified air enters the cooler where nucleation occur. Temperature difference between the heater and the cooler determines the supersaturation, which in its turn determines the minimal size of particles that will be detected (the greater the difference, the smaller particles get counted). As proper nucleation conditions occur in the center of the flow, sometimes incoming flow is divided: most of it undergoes filtering and forms the sheath flow, which the rest of flow, still containing particles, is inserted into via a capillary. The more uniform is obtained supersaturation, the sharper is particle minimal size cutoff. During the heterogeneous nucleation process in the nucleation chamber, particles grow up to 10…12 μm large and so are conveniently detected by usual techniques, such as laser nephelometry (measurement of light pulses scattered by the grown-up particles).[4]

References[edit]

  1. ^ "General Safe Practices for Working with Engineered Nanomaterials in Research Laboratories". U.S. National Institute for Occupational Safety and Health: 29–30. May 2012. doi:10.26616/NIOSHPUB2012147. Retrieved 2017-03-05.
  • ^ a b Aerosol Measurement: Principles, Techniques, and Applications, edited by Pramod Kulkarni, Paul A. Baron, Klaus Willeke, p384, [1] retrieved 15 May 2012
  • ^ Kulkarni, Baronand and Willeke, p381
  • ^ a b c Condensation Particle Counters (CPC)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Condensation_particle_counter&oldid=1214428117"

    Categories: 
    Meteorological instrumentation and equipment
    Counting instruments
    Particle detectors
    Aerosols
    Air pollution
    Aerosol measurement
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 18 March 2024, at 22:14 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki