Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Uses  





2 Analysis  





3 See also  





4 References  





5 External links  














Conical pendulum






Català
Deutsch
Español
Français
ि
עברית
Nederlands
Norsk nynorsk
Polski
Português
Română

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Monumental conical pendulum clock by Farcot, 1878

Aconical pendulum consists of a weight (orbob) fixed on the end of a string or rod suspended from a pivot. Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circleorellipse with the string (or rod) tracing out a cone. The conical pendulum was first studied by the English scientist Robert Hooke around 1660[1] as a model for the orbital motionofplanets.[2] In 1673 Dutch scientist Christiaan Huygens calculated its period, using his new concept of centrifugal force in his book Horologium Oscillatorium. Later it was used as the timekeeping element in a few mechanical clocks and other clockwork timing devices.[3][4]

Uses

[edit]

During the 1800s, conical pendulums were used as the timekeeping element in a few clockwork timing mechanisms where a smooth motion was required, as opposed to the unavoidably jerky motion provided by ordinary pendulums.[4] Two examples were mechanisms to turn the lenses of lighthouses to sweep their beams across the sea, and the location drives of equatorial mount telescopes, to allow the telescope to follow a star smoothly across the sky as the Earth turns.[3]

One of the most important uses of the conical pendulum was in the flyball governor (centrifugal governor) invented by James Watt in 1788 which regulated the speed of steam engines during the Steam Age in the 1800s.

Some playground games, including totem tennis and tetherball, use a ball attached to a pole by a cord which functions as a conical pendulum, although in tetherball the pendulum gets shorter as the cord wraps around the pole. Some amusement park rides also act as conical pendulums.

Analysis

[edit]

Consider a conical pendulum consisting of a bob of mass m revolving without friction in a circle at a constant speed v on a string of length L at an angle of θ from the vertical.

There are two forces acting on the bob:

The force exerted by the string can be resolved into a horizontal component, T sin(θ), toward the center of the circle, and a vertical component, T cos(θ), in the upward direction. From Newton's second law, the horizontal component of the tension in the string gives the bob a centripetal acceleration toward the center of the circle:

Conical pendulum whose bob travels in a horizontal circle of radius r. The bob has mass m and is suspended by a string of length L. The tension force of the string acting on the bob is the vector T, and the bob's weight is the vector mg.

Since there is no acceleration in the vertical direction, the vertical component of the tension in the string is equal and opposite to the weight of the bob:

These two equations can be solved for T/m and equated, thereby eliminating T and m and yielding the centripetal acceleration:

A little rearrangement gives:

Since the speed of the pendulum bob is constant, it can be expressed as the circumference 2πr divided by the time t required for one revolution of the bob:

Substituting the right side of this equation for v in the previous equation, we find:

Using the trigonometric identity tan(θ) = sin(θ) / cos(θ) and solving for t, the time required for the bob to travel one revolution is

In a practical experiment, r varies and is not as easy to measure as the constant string length L. r can be eliminated from the equation by noting that r, h, and L form a right triangle, with θ being the angle between the leg h and the hypotenuse L (see diagram). Therefore,

Substituting this value for r yields a formula whose only varying parameter is the suspension angle θ:[5]

For small angles θ, cos(θ) ≈ 1; in which case

so that for small angles the period t of a conical pendulum is equal to the period of an ordinary pendulum of the same length. Also, the period for small angles is approximately independent of changes in the angle θ. This means the period of rotation is approximately independent of the force applied to keep it rotating. This property, called isochronism, is shared with ordinary pendulums and makes both types of pendulums useful for timekeeping.

See also

[edit]

References

[edit]
  1. ^ O'Connor, J.J.; E.F. Robertson (August 2002). "Robert Hooke". Biographies, MacTutor History of Mathematics Archive. School of Mathematics and Statistics, Univ. of St. Andrews, Scotland. Retrieved 2009-02-21.
  • ^ Nauenberg, Michael (2006). "Robert Hooke's seminal contribution to orbital dynamics". Robert Hooke: Tercentennial Studies. Ashgate Publishing. pp. 17–19. ISBN 0-7546-5365-X.
  • ^ a b Beckett, Edmund (Lord Grimsthorpe) (1874). A Rudimentary Treatise on Clocks and Watches and Bells, 6th Ed. London: Lockwood & Co. pp. 22–26.
  • ^ a b "Clock". Encyclopædia Britannica, 9th Ed. Vol. 6. Henry G. Allen Co. 1890. p. 15. Retrieved 2008-02-25.
  • ^ Serway, Raymond (1986). Physics for Scientists and Engineers, second ed. Saunders College Publishing. p. 109. ISBN 0-03-004534-7.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Conical_pendulum&oldid=1162990898"

    Category: 
    Pendulums
     



    This page was last edited on 2 July 2023, at 08:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki