Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties in three dimensions  





2 Coplanarity of points in ndimensions whose coordinates are given  





3 Geometric shapes  





4 See also  





5 References  





6 External links  














Coplanarity






العربية
Български
Català
Deutsch
Español
فارسی
Français
Gaeilge

Italiano
Nederlands

Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Svenska
ி
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ingeometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

An example of coplanar points

Two lines in three-dimensional space are coplanar if there is a plane that includes them both. This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines.

Distance geometry provides a solution technique for the problem of determining whether a set of points is coplanar, knowing only the distances between them.

Properties in three dimensions[edit]

In three-dimensional space, two linearly independent vectors with the same initial point determine a plane through that point. Their cross product is a normal vector to that plane, and any vector orthogonal to this cross product through the initial point will lie in the plane.[1] This leads to the following coplanarity test using a scalar triple product:

Four distinct points, x1, x2, x3, x4, are coplanar if and only if,

which is also equivalent to

If three vectors a, b, c are coplanar, then if ab = 0 (i.e., a and b are orthogonal) then

where denotes the unit vector in the direction of a. That is, the vector projectionsofcona and conb add to give the original c.

Coplanarity of points in n dimensions whose coordinates are given[edit]

Since three or fewer points are always coplanar, the problem of determining when a set of points are coplanar is generally of interest only when there are at least four points involved. In the case that there are exactly four points, several ad hoc methods can be employed, but a general method that works for any number of points uses vector methods and the property that a plane is determined by two linearly independent vectors.

In an n-dimensional space where n ≥ 3, a set of k points are coplanar if and only if the matrix of their relative differences, that is, the matrix whose columns (or rows) are the vectors is of rank 2 or less.

For example, given four points

if the matrix

is of rank 2 or less, the four points are coplanar.

In the special case of a plane that contains the origin, the property can be simplified in the following way: A set of k points and the origin are coplanar if and only if the matrix of the coordinates of the k points is of rank 2 or less.

Geometric shapes[edit]

Askew polygon is a polygon whose vertices are not coplanar. Such a polygon must have at least four vertices; there are no skew triangles.

Apolyhedron that has positive volume has vertices that are not all coplanar.

See also[edit]

References[edit]

  1. ^ Swokowski, Earl W. (1983), Calculus with Analytic Geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 647, ISBN 0-87150-341-7

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Coplanarity&oldid=1184097995"

Category: 
Planes (geometry)
Hidden categories: 
Articles with short description
Short description is different from Wikidata
 



This page was last edited on 8 November 2023, at 09:16 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki