Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Properties  





3 Difference between Crocco's Mission and Gravity Assists  





4 Literature  





5 References  














Crocco's Multiplanetary Trajectory






Deutsch
Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Crocco's Multiplanetary Trajectory, sometimes named Crocco's Mission and Crocco's "Grand Tour", is a mathematical description of an hypothetical Earth-Mars-Venus-Earth-Research Mission, which was first proposed in 1956 by the Aeronautics and Space Pioneer G. A. Crocco during the VII. International Astronautical Congress in Rome.

A simplified Depiction of Crocco's Multiplanetary Trajectory. The black Ellipse depicts the trajectory, while the blue, red and green curves represent the Orbits of Earth, Mars and Venus respectively. The positions of the planets are marked on the date of Departure from Earth and at the date the spacecraft passes at the shortest distance to the respective planet.

History

[edit]

With the beginning of spaceflight in the first half of the 20th century, theoretical mathematicians estimated the amount of energy required for interplanetary spaceflight for the first time, the energy requirement being significantly higher than that of any chemical fuel available at that time. It remained questionable if humanity would ever be capable of reaching certain locations in the Solar System.[1]

Even though Walter Hohmann had already calculated the most energy-efficient trajectory between two similar circular orbits (the Hohmann transfer orbit) at the beginning of the century,[2] an Earth-Mars-Earth round trip utilizing this flight path would have made it a necessity to remain on the surface of Mars for a duration of 425 days, waiting for the planets to align and the next launch window to open, in addition to 259 days for both the journey to Mars and the return to Earth.

For this reason, Gaetano Crocco developed the concept of a Nonstop-Round-Trip to Mars, which would have had a far lower energy requirement, as the rocket engines of the craft would only have to accelerate it in a single maneuver to attain the necessary velocity to reach Mars. During the passing of the spacecraft, onboard crew would have performed analysis of the martian surface. Even this trajectory would have amounted to a flight time of a little over one year, if the spacecraft were not accelerated in another orbital maneuver.[3]

Properties

[edit]

Crocco searched for an orbit with the following properties:

With proper selection of a certain launch window, this would also have allowed the spacecraft to return one year after departure. By applying slight modifications to the trajectory it would have been possible to pass by Venus in the same mission as well.

Crocco realized that the flight trajectory may be disrupted by the gravitational fields of Mars and Venus, delaying or ultimately preventing return to Earth. He solved this problem by directing the flight path through the gravitational fields of Venus and Mars in such a way that their attraction would cancel each other out.[4] The Mission Profile presented in 1956 consisted of a 154-day travel from Earth to Mars, followed by a 113-day travel to Venus including passing by the planet and using the gravitational attraction for a course correction, followed by the 98-day return to Earth.[5] Crocco proposed the first Mission to be launched in June 1971.

Difference between Crocco's Mission and Gravity Assists

[edit]

Crocco was well aware of the planet's gravitational effects, but his mission profile is neither using them to accelerate nor decelerate, instead limiting itself to utilizing them for trajectory stabilizations.[6] Still, it is mistakenly widely assumed that G. A. Crocco would have been the inventor of the gravity assist, which was first presented in 1961 by the American mathematician Michael Minovitch as a method[7] to allow for the exploration of the outer planets which had been deemed nearly impossible beforehand. Pioneer 10, 11 and the Voyager probes would make use of this technique in the 1970s.[8]

Literature

[edit]

References

[edit]
  1. ^ Richard L. Dowling, Kosmann, William J.; Minovitch, Michael A.; Ridenoure, Rex W: The origin of gravity-propelled interplanetary space travel 41st Congress of the International Astronautical Federation, Dresden 1990, S. 1.
  • ^ Richard L. Dowling, Kosmann, William J.; Minovitch, Michael A.; Ridenoure, Rex W: The origin of gravity-propelled interplanetary space travel 41st Congress of the International Astronautical Federation, Dresden 1990, S. 2-3.
  • ^ Gaetano Arturo Crocco: One-Year Exploration-Trip Earth-Mars-Venus-Earth. Jet Propulsion Laboratory 1961, S. 228-229.
  • ^ Richard L. Dowling, Kosmann, William J.; Minovitch, Michael A.; Ridenoure, Rex W: The origin of gravity-propelled interplanetary space travel 41st Congress of the International Astronautical Federation, Dresden 1990, S. 12-13.
  • ^ Gaetano Arturo Crocco: One-Year Exploration-Trip Earth-Mars-Venus-Earth. Jet Propulsion Laboratory 1961, S. 233.
  • ^ Gaetano Arturo Crocco: One-Year Exploration-Trip Earth-Mars-Venus-Earth. Jet Propulsion Laboratory 1961, S. 239.
  • ^ Michael A. Minovitch: A method for determining interplanetary free-fall reconnaissance trajectories Jet Propulsion Laboratory, 1961.
  • ^ Richard L. Dowling, Kosmann, William J.; Minovitch, Michael A.; Ridenoure, Rex W: The origin of gravity-propelled interplanetary space travel 41st Congress of the International Astronautical Federation, Dresden 1990.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Crocco%27s_Multiplanetary_Trajectory&oldid=1141437294"

    Categories: 
    Astrophysics
    Human missions to Mars
    Human missions to Venus
    Missions to Mars
    Missions to Venus
     



    This page was last edited on 25 February 2023, at 02:00 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki