Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Causes  





2 Development  





3 Measurement and quantification  





4 Prevention and repair  





5 See also  





6 Notes  














Crocodile cracking






العربية
فارسی
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Fatigue cracking in asphalt pavement.
An example of moderate to severe crocodile cracking.

Crocodile cracking (also called alligator cracking and perhaps misleadingly fatigue cracking) is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting or interlaced cracking in the asphalt layer resembling the hide of a crocodile.[1] Cell sizes can vary in size up to 300 millimetres (12 in) across, but are typically less than 150 millimetres (5.9 in) across. Fatigue cracking is generally a loading failure,[1] but numerous factors can contribute to it. It is often a sign of sub-base failure, poor drainage, or repeated over-loadings. It is important to prevent fatigue cracking, and repair as soon as possible, as advanced cases can be very costly to repair and can lead to formation of potholes or premature pavement failure.

It is usually studied under the transportation section of civil engineering.

Causes[edit]

Fatigue cracking is an asphalt pavement distress most often instigated by failure of the surface due to traffic loading. However, fatigue cracking can be greatly influenced by environmental and other effects while traffic loading remains the direct cause. Frequently, overloading happens because the base or subbase inadequately support the surface layer and subsequently cannot handle loads that it would normally endure.[2] There are many ways that the subbase or base can be weakened.

Poor drainage in the road bed is a frequent cause of this degradation of the base or subgrade.[1] A heavy spring thaw, similarly to poor drainage, can weaken the base course, leading to fatigue cracking.[1]

Strippingorraveling is another possible cause of fatigue cracking. Stripping occurs when poor adhesion between asphalt and aggregate allows the aggregate at the surface to dislodge. If left uncorrected, this reduces the thickness of the pavement, reducing the affected portion's ability to carry its designed loading.[1] This can cause fatigue cracking to develop rapidly, as overloading will happen with loads of less magnitude or frequency.

Edge cracking is the formation of crescent-shaped cracks near the edge of a road.[3] It is caused by lack of support of the road edge, sometimes due to poorly drained or weak shoulders. If left untreated, additional cracks will form until it resembles fatigue cracking.[3] Like wheel-path fatigue cracking, poor drainage is a main cause of edge cracking, as it weakens the base, which hastens the deterioration of the pavement.[4] Water ponding (a buildup of water which can also be called puddling) happens more frequently near the edge than in the center of the road path, as roads are usually sloped to prevent in-lane ponding. This leads to excess moisture in the shoulders and subbase at the road edge. Edge cracking differs from fatigue cracking in that the cracks form from the top down, where fatigue cracks usually start at the bottom and propagate to the surface.

Development[edit]

Fatigue cracking manifests itself initially as longitudinal cracking (cracks along the direction of the flow of traffic) in the top layer of the asphalt.[5] These cracks are initially thin and sparsely distributed. If further deterioration is allowed, these longitudinal cracks are connected by transverse cracks to form sharp sided, prismatic pieces. This interlaced cracking pattern resembles the scales on the back of a crocodile or alligator, hence the nickname, crocodile cracking.

More severe cases involve pumping of fines, spalling, and loose pieces of pavement. The most severe cases of fatigue cracking often occur with other pavement distresses, but are exemplified by: potholes,[1] large cracks (3/8" or larger), and severely spalled edges.[4]

Measurement and quantification[edit]

There are many different ways to measure fatigue cracking, but in general a pavement distress manual or index will be used. For example, the Pavement Condition Index is widely used to quantify the overall level of distress and condition of a section of road. Measurement of fatigue cracking specifically (and pavement distress in general) is necessary to determine the overall condition of a road, and for determination of a time-line for rehabilitation and/or repair. There are many other rating systems, and many rating systems currently in use are based on the AASHO Road Test.

There are two important criteria to take into account when measuring fatigue cracking. The first is the extent of the cracking. This is the amount of road surface area which is affected by this pavement distress. The second criterion is the severity of the cracking.[6] Severity, which has been discussed above, refers to how far the cracking has progressed, and is often directly a function of crack width.[6] Severity may be rated numerically, or given a rating from "low" to "severe". The rating may be entered into a pavement management system, which will suggest a priority and method for the repair.

Systems have been developed that detect fatigue cracking and other types of pavement distress automatically.[7] They measure the severity and frequency of alligator cracking on the road-path. One such machine is the road surface profilometer, which is mounted on a vehicle and measures the profile of the road surface while it is moving down the roadway.

Prevention and repair[edit]

Preventing fatigue cracking can be as simple as preventing the common causes. For example, reducing overloading on an asphalt pavement or improving drainage[2] can prevent fatigue cracking in many cases. Prevention primarily depends on designing and constructing the pavement and subbase to support the expected traffic loads, and providing good drainage to keep water out of the subbase.

A good strategy to prevent overloading, which is a main cause of fatigue cracking, is to increase the depth of the asphalt layer. According to certain researchers, pavements that exceed a certain minimum strength or thickness can hypothetically handle infinitely many loads without showing structural defects, including fatigue cracking.[1] These pavements are called perpetual pavements or long-term performance pavements (LTPP).

When repairing pavement affected by fatigue cracking, the main cause of the distress should be determined. However, often the specific cause is fairly difficult to determine, and prevention is therefore correspondingly difficult. Any investigation should involve digging a pit or coring the pavement and subbase to determine the pavement's structural makeup as well as determining whether or not subsurface moisture is a contributing factor.[1] The repair needed also differs based on the severity and extent of the cracking.

For minor cracks, preventative crack filling is a good procedure that can help prevent future potholes from forming.

In the early stages, sealing cracks with crack sealant limits further deterioration of the subgrade due to moisture penetration. Small areas may be repaired by removal of the affected area, and replacement with new base and asphalt surface.[2] Once the damage has progressed or the affected area is large and extensive, a structural asphalt overlay or complete reconstruction is necessary to ensure structural integrity. Proper repair may include first sealing cracks with crack sealant, installing paving fabric over a tack coat, or milling the damaged asphalt. An overlay of hot mix asphalt is then placed over the completed repair. [2]

See also[edit]

Notes[edit]

  1. ^ a b c d e f g h Flexible Pavement Distresses[permanent dead link], Pavement Interactive, date accessed: June 6, 2017
  • ^ a b c d PASER Asphalt Pavement Manual, Asphalt Pavement Alliance of Michigan, date accessed: June 6, 2017
  • ^ a b Distress Identification Manual for the Long-Term Pavement Performance (LTPP) program, FHWA, JUNE 2003, http://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/reports/03031/03031.pdf
  • ^ a b Alligator Cracking Archived 2010-10-31 at the Wayback Machine, North Carolina Department of Transportation Pavement Management Unit, date accessed: November 21, 2010
  • ^ Alligator Cracking Archived 2012-05-01 at the Wayback Machine, Advanced Transportation Technology West Valley College, date accessed: November 9, 2010
  • ^ a b Crocodile Cracking, Local Government & Municipal Knowledge Base, accessed December 2, 2010
  • ^ Automated detection and classification of cracking in road pavements, Australian Road Research Board LLT, date accessed: December 4, 2010
  • [1]

    1. ^ "Flexible Pavement Distresses and Crocodile Cracking". 8 December 2023.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Crocodile_cracking&oldid=1210311845"

    Categories: 
    Pavement engineering
    Road infrastructure
    Mechanical failure modes
    Patterns
    Fracture mechanics
    Pavement distress
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from July 2020
    Articles with permanently dead external links
    Webarchive template wayback links
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 26 February 2024, at 00:51 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki