Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 References  














Curievon Schweidler law







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Curie–von Schweidler law refers to the response of dielectric material to the step input of a direct current (DC) voltage first observed by Jacques Curie[1][2] and Egon Ritter von Schweidler.[3]

Overview

[edit]

According to this law, the current decays according to a power law:

where is the current at a given charging time, , and is the decay constant such that . Given that the dielectric has a finite conductance, the equation for current measured through a dielectric under a DC electrical field is:

where is a constant of proportionality. This stands in contrast to the Debye formulation, which states that the current is proportional an exponential function with a time constant, , according to:

.

The Curie–von Schweidler behavior has been observed in many instances such as those shown by Andrzej K. Jonscher[4] and Jameson et al.[5] It has been interpreted as a many-body problem by Jonscher, but can also be formulated as an infinite number of resistor-capacitor circuits. This comes from the fact that the power law can be expressed as:

where is the Gamma function. Effectively, this relationship shows the power law expression to be equivalent to an infinite weighted sum of Debye responses which is mathematically correct but not quite useful for the purpose of modelling and simulation. Interestingly, the power-law nature of the Curie–von Schweidler law motivated the birth of the fractional capacitor[6][7] in electrical modelling and in describing anomalous dielectric behaviour. The fractional capacitor displays an interplay between a resistor and capacitor for values of lying between and .

The Curie-von Schweidler law corresponds to the time domain current response of the main dielectric models, such as the Cole-Cole_equation, the Cole-Davidson_equation, and the Havriliak–Negami_relaxation, for small time arguments.[8]

Recently, Pandey gave a theoretical derivation of the Curie–von Schweidler law which also seems to be the first work that gave a physical interpretation to its parameters.[9] Pandey assumed a series combination of a resistor, , and a capacitor with a linear time varying capacitance, , such that,

, , where is the constant geometric capacitance. He found,

, where is the applied constant voltage. A key intermediate finding in this derivation is that the charge accumulation in a capacitor with a time-varying capacitance should not be described by the conventional charge-voltage relation of the capacitor, , because it is only applicable for the case of a constant-capacitance capacitor and therefore it leads to inconsistent results. Rather, for time-varying capacitors the appropriate relation is given by the convolution of the capacitance with the first time-derivative of the voltage, i.e., . Surprisingly, the convolution relation reduces to the conventional relation in the case of the constant-capacitance capacitor. The results obtained by Pandey satisfy the experimental data quite well.[9] Consequently, a physical interpretation of the fractional derivatives and the fractional capacitor are now available.

References

[edit]
  1. ^ Curie, Jaques (1889). "Recherches sur le pouvoir inducteur spécifique et sur la conductibilité des corps cristallisés". Annales de Chimie et de Physique. 17: 384–434.
  • ^ Curie, Jaques (1889). "Recherches sur la conductibilité des corps cristallisés". Annales de Chimie et de Physique. 18: 203–269.
  • ^ Schweidler, Egon Ritter von (1907). "Studien über die Anomalien im Verhalten der Dielektrika (Studies on the anomalous behaviour of dielectrics)". Annalen der Physik. 329 (14): 711–770. Bibcode:1907AnP...329..711S. doi:10.1002/andp.19073291407.
  • ^ Jonscher, Andrzej K. (1983), Dielectric Relaxation in Solids, Chelsea Dielectrics Press Limited, ISBN 978-0-9508711-0-3
  • ^ Jameson, N. Jordan; Azarian, Michael H.; Pecht, Michael (2017). Thermal Degradation of Polyimide Insulation and its Effect on Electromagnetic Coil Impedance. Proceedings of the Society for Machinery Failure Prevention Technology 2017 Annual Conference.
  • ^ Westerlund, Svante (1991). "Dead matter has memory!". Physica Scripta. 43 (2): 174–179. Bibcode:1991PhyS...43..174W. doi:10.1088/0031-8949/43/2/011. S2CID 250788534.
  • ^ Westerlund, Svante (1994). "Capacitor theory". IEEE Transactions on Dielectrics and Electrical Insulation. 1 (8): 826–839. doi:10.1109/94.326654.
  • ^ Holm, Sverre (2020). "Time domain characterization of the Cole-Cole dielectric model". Journal of Electrical Bioimpedance. 11 (1): 101–105. doi:10.2478/joeb-2020-0015. PMC 7851980. PMID 33584910.
  • ^ a b Pandey, Vikash (29 March 2022). "Origin of the Curie–von Schweidler law and the fractional capacitor from time-varying capacitance". Journal of Power Sources. 532: 231309. arXiv:2006.06073. Bibcode:2022JPS...53231309P. doi:10.1016/j.jpowsour.2022.231309. S2CID 219573556.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Curie–von_Schweidler_law&oldid=1188953675"

    Category: 
    Dielectrics
    Hidden category: 
    Use dmy dates from January 2022
     



    This page was last edited on 8 December 2023, at 19:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki