Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 History  





3 Examples  





4 Computing the cycle rank  





5 Applications  



5.1  Star height of regular languages  





5.2  Cholesky factorization in sparse matrix computations  







6 See also  





7 References  














Cycle rank






Français
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ingraph theory, the cycle rank of a directed graph is a digraph connectivity measure proposed first by Eggan and Büchi (Eggan 1963). Intuitively, this concept measures how close a digraph is to a directed acyclic graph (DAG), in the sense that a DAG has cycle rank zero, while a complete digraphoforder n with a self-loop at each vertex has cycle rank n. The cycle rank of a directed graph is closely related to the tree-depth of an undirected graph and to the star height of a regular language. It has also found use in sparse matrix computations (see Bodlaender et al. 1995) and logic (Rossman 2008).

Definition

[edit]

The cycle rank r(G) of a digraph G = (VE) is inductively defined as follows:

where is the digraph resulting from deletion of vertex v and all edges beginning or ending at v.

The tree-depth of an undirected graph has a very similar definition, using undirected connectivity and connected components in place of strong connectivity and strongly connected components.

History

[edit]

Cycle rank was introduced by Eggan (1963) in the context of star heightofregular languages. It was rediscovered by (Eisenstat & Liu 2005) as a generalization of undirected tree-depth, which had been developed beginning in the 1980s and applied to sparse matrix computations (Schreiber 1982).

Examples

[edit]

The cycle rank of a directed acyclic graph is 0, while a complete digraph of order n with a self-loop at each vertex has cycle rank n. Apart from these, the cycle rank of a few other digraphs is known: the undirected path of order n, which possesses a symmetric edge relation and no self-loops, has cycle rank (McNaughton 1969). For the directed -torus , i.e., the cartesian product of two directed circuits of lengths m and n, we have and for m ≠ n (Eggan 1963, Gruber & Holzer 2008).

Computing the cycle rank

[edit]

Computing the cycle rank is computationally hard: Gruber (2012) proves that the corresponding decision problem is NP-complete, even for sparse digraphs of maximum outdegree at most 2. On the positive side, the problem is solvable in time on digraphs of maximum outdegree at most 2, and in time on general digraphs. There is an approximation algorithm with approximation ratio .

Applications

[edit]

Star height of regular languages

[edit]

The first application of cycle rank was in formal language theory, for studying the star heightofregular languages. Eggan (1963) established a relation between the theories of regular expressions, finite automata, and of directed graphs. In subsequent years, this relation became known as Eggan's theorem, cf. Sakarovitch (2009). In automata theory, a nondeterministic finite automaton with ε-moves (ε-NFA) is defined as a 5-tuple, (Q, Σ, δ, q0, F), consisting of

A word w ∈ Σ* is accepted by the ε-NFA if there exists a directed path from the initial state q0 to some final state in F using edges from δ, such that the concatenation of all labels visited along the path yields the word w. The set of all words over Σ* accepted by the automaton is the language accepted by the automaton A.

When speaking of digraph properties of a nondeterministic finite automaton A with state set Q, we naturally address the digraph with vertex set Q induced by its transition relation. Now the theorem is stated as follows.

Eggan's Theorem: The star height of a regular language L equals the minimum cycle rank among all nondeterministic finite automata with ε-moves accepting L.

Proofs of this theorem are given by Eggan (1963), and more recently by Sakarovitch (2009).

Cholesky factorization in sparse matrix computations

[edit]

Another application of this concept lies in sparse matrix computations, namely for using nested dissection to compute the Cholesky factorization of a (symmetric) matrix in parallel. A given sparse -matrix M may be interpreted as the adjacency matrix of some symmetric digraph Gonn vertices, in a way such that the non-zero entries of the matrix are in one-to-one correspondence with the edges of G. If the cycle rank of the digraph G is at most k, then the Cholesky factorization of M can be computed in at most k steps on a parallel computer with processors (Dereniowski & Kubale 2004).

See also

[edit]

References

[edit]
  • Bodlaender, Hans L.; Gilbert, John R.; Hafsteinsson, Hjálmtýr; Kloks, Ton (1995), "Approximating treewidth, pathwidth, frontsize, and shortest elimination tree", Journal of Algorithms, 18 (2): 238–255, doi:10.1006/jagm.1995.1009, Zbl 0818.68118.
  • Dereniowski, Dariusz; Kubale, Marek (2004), "Cholesky Factorization of Matrices in Parallel and Ranking of Graphs", 5th International Conference on Parallel Processing and Applied Mathematics (PDF), Lecture Notes on Computer Science, vol. 3019, Springer-Verlag, pp. 985–992, doi:10.1007/978-3-540-24669-5_127, ISBN 978-3-540-21946-0, Zbl 1128.68544, archived from the original (PDF) on 2011-07-16.
  • Eggan, Lawrence C. (1963), "Transition graphs and the star-height of regular events", Michigan Mathematical Journal, 10 (4): 385–397, doi:10.1307/mmj/1028998975, Zbl 0173.01504.
  • Eisenstat, Stanley C.; Liu, Joseph W. H. (2005), "The theory of elimination trees for sparse unsymmetric matrices", SIAM Journal on Matrix Analysis and Applications, 26 (3): 686–705, doi:10.1137/S089547980240563X.
  • Gruber, Hermann (2012), "Digraph Complexity Measures and Applications in Formal Language Theory" (PDF), Discrete Mathematics & Theoretical Computer Science, 14 (2): 189–204.
  • Gruber, Hermann; Holzer, Markus (2008), "Finite automata, digraph connectivity, and regular expression size" (PDF), Proc. 35th International Colloquium on Automata, Languages and Programming, Lecture Notes on Computer Science, vol. 5126, Springer-Verlag, pp. 39–50, doi:10.1007/978-3-540-70583-3_4, ISBN 978-3-540-70582-6.
  • McNaughton, Robert (1969), "The loop complexity of regular events", Information Sciences, 1 (3): 305–328, doi:10.1016/S0020-0255(69)80016-2.
  • Rossman, Benjamin (2008), "Homomorphism preservation theorems", Journal of the ACM, 55 (3): Article 15, doi:10.1145/1379759.1379763.
  • Sakarovitch, Jacques (2009), Elements of Automata Theory, Cambridge University Press, ISBN 978-0-521-84425-3
  • Schreiber, Robert (1982), "A new implementation of sparse Gaussian elimination" (PDF), ACM Transactions on Mathematical Software, 8 (3): 256–276, doi:10.1145/356004.356006, archived from the original (PDF) on 2011-06-07, retrieved 2010-01-04.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Cycle_rank&oldid=1234809393"

    Categories: 
    Graph connectivity
    Graph invariants
    NP-complete problems
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 16 July 2024, at 07:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki