Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Darboux sums  





1.2  Darboux integrals  







2 Properties  





3 Examples  



3.1  A Darboux-integrable function  





3.2  A nonintegrable function  







4 Refinement of a partition and relation to Riemann integration  





5 See also  





6 Notes  





7 References  














Darboux integral






Català
Чӑвашла
Ελληνικά
Español
Français
Italiano
Lietuvių
Nederlands
Português
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In the branch of mathematics known as real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal.[1] The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral. Consequently, introductory textbooks on calculus and real analysis often develop Riemann integration using the Darboux integral, rather than the true Riemann integral.[2] Moreover, the definition is readily extended to defining Riemann–Stieltjes integration.[3] Darboux integrals are named after their inventor, Gaston Darboux (1842–1917).

Definition[edit]

The definition of the Darboux integral considers upper and lower (Darboux) integrals, which exist for any bounded real-valued function on the interval The Darboux integral exists if and only if the upper and lower integrals are equal. The upper and lower integrals are in turn the infimum and supremum, respectively, of upper and lower (Darboux) sums which over- and underestimate, respectively, the "area under the curve." In particular, for a given partition of the interval of integration, the upper and lower sums add together the areas of rectangular slices whose heights are the supremum and infimum, respectively, of f in each subinterval of the partition. These ideas are made precise below:

Darboux sums[edit]

Lower (green) and upper (green plus lavender) Darboux sums for four subintervals

Apartition of an interval is a finite sequence of values such that

Each interval is called a subinterval of the partition. Let be a bounded function, and let

be a partition of . Let


The upper Darboux sumof with respect to is

The lower Darboux sumof with respect to is

The lower and upper Darboux sums are often called the lower and upper sums.

Darboux integrals[edit]

The upper Darboux integraloffis

The lower Darboux integraloffis

In some literature, an integral symbol with an underline and overline represent the lower and upper Darboux integrals respectively:

and like Darboux sums they are sometimes simply called the lower and upper integrals.

IfUf = Lf, then we call the common value the Darboux integral.[4] We also say that fisDarboux-integrable or simply integrable and set

An equivalent and sometimes useful criterion for the integrability of f is to show that for every ε > 0 there exists a partition Pε of [a, b] such that[5]

Properties[edit]

then FisLipschitz continuous. An identical result holds if F is defined using an upper Darboux integral.

Examples[edit]

A Darboux-integrable function[edit]

Suppose we want to show that the function is Darboux-integrable on the interval and determine its value. To do this we partition into equally sized subintervals each of length . We denote a partition of equally sized subintervals as .

Now since is strictly increasing on , the infimum on any particular subinterval is given by its starting point. Likewise the supremum on any particular subinterval is given by its end point. The starting point of the -th subinterval in is and the end point is . Thus the lower Darboux sum on a partition is given by

similarly, the upper Darboux sum is given by

Since

Thus for given any , we have that any partition with satisfies

which shows that is Darboux integrable. To find the value of the integral note that

Darboux sums
Upper Darboux sum example
Darboux upper sums of the function y = x2
Lower Darboux sum example
Darboux lower sums of the function y = x2

A nonintegrable function[edit]

Suppose we have the Dirichlet function defined as

Since the rational and irrational numbers are both dense subsetsof, it follows that takes on the value of 0 and 1 on every subinterval of any partition. Thus for any partition we have

from which we can see that the lower and upper Darboux integrals are unequal.

Refinement of a partition and relation to Riemann integration[edit]

When passing to a refinement, the lower sum increases and the upper sum decreases.

Arefinement of the partition is a partition such that for all i = 0, …, n there is an integer r(i) such that

In other words, to make a refinement, cut the subintervals into smaller pieces and do not remove any existing cuts.

If is a refinement of then

and

IfP1, P2 are two partitions of the same interval (one need not be a refinement of the other), then

and it follows that

Riemann sums always lie between the corresponding lower and upper Darboux sums. Formally, if and together make a tagged partition

(as in the definition of the Riemann integral), and if the Riemann sum of is equal to R corresponding to P and T, then

From the previous fact, Riemann integrals are at least as strong as Darboux integrals: if the Darboux integral exists, then the upper and lower Darboux sums corresponding to a sufficiently fine partition will be close to the value of the integral, so any Riemann sum over the same partition will also be close to the value of the integral. There is (see below) a tagged partition that comes arbitrarily close to the value of the upper Darboux integral or lower Darboux integral, and consequently, if the Riemann integral exists, then the Darboux integral must exist as well.

See also[edit]

Notes[edit]

  1. ^ David J. Foulis; Mustafa A. Munem (1989). After Calculus: Analysis. Dellen Publishing Company. p. 396. ISBN 978-0-02-339130-9.
  • ^ Spivak, M. (1994). Calculus (3rd. edition). Houston, TX: Publish Or Perish, Inc. pp. 253–255. ISBN 0-914098-89-6.
  • ^ Rudin, W. (1976). Principles of Mathematical Analysis (3rd. edition). New York: McGraw-Hill. pp. 120–122. ISBN 007054235X.
  • ^ Wolfram MathWorld
  • ^ Spivak 2008, chapter 13.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Darboux_integral&oldid=1209750835"

    Category: 
    Definitions of mathematical integration
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from February 2013
    All articles needing additional references
    All articles with dead YouTube links
    Articles with dead YouTube links from February 2022
     



    This page was last edited on 23 February 2024, at 11:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki