Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Variants  



1.1  ETL-based data warehousing  





1.2  ELT-based data warehousing  







2 Benefits  





3 Generic  





4 Related systems  





5 History  





6 Information storage  



6.1  Facts  





6.2  Dimensional versus normalized approach for storage of data  



6.2.1  Dimensional approach  





6.2.2  Normalized approach  









7 Design methods  



7.1  Bottom-up design  





7.2  Top-down design  





7.3  Hybrid design  







8 Characteristics  



8.1  Subject-oriented  





8.2  Integrated  





8.3  Time-variant  





8.4  Nonvolatile  







9 Options  



9.1  Aggregation  





9.2  Virtualization  







10 Architecture  





11 Versus operational system  





12 Evolution in organization use  





13 See also  





14 References  





15 Further reading  














Data warehouse






العربية
Asturianu
Azərbaycanca
Български
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Euskara
فارسی
Français
Galego

ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Latviešu
Lietuvių
Lombard
Magyar

Bahasa Melayu

Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Simple English
Slovenčina
کوردی
Српски / srpski
Svenska
ி

Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Data Warehouse and Data-Marts overview
Data Warehouse and Data mart overview, with Data Marts shown in the top right.

Incomputing, a data warehouse (DWorDWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is considered a core component of business intelligence.[1] Data warehouses are central repositories of integrated data from one or more disparate sources. They store current and historical data in one single place that are used for creating reports. This is beneficial for companies as it enables them to interrogate and draw insights from their data and make decisions.[2]

The basic architecture of a data warehouse

The data stored in the warehouse is uploaded from the operational systems (such as marketing or sales). The data may pass through an operational data store and may require data cleansing for additional operations to ensure data quality before it is used in the data warehouse for reporting.

Extract, transform, load (ETL) and extract, load, transform (ELT) are the two main approaches used to build a data warehouse system.

Variants

[edit]

ETL-based data warehousing

[edit]

The typical extract, transform, load (ETL)-based data warehouse uses staging, data integration, and access layers to house its key functions. The staging layer or staging database stores raw data extracted from each of the disparate source data systems. The integration layer integrates disparate data sets by transforming the data from the staging layer, often storing this transformed data in an operational data store (ODS) database. The integrated data are then moved to yet another database, often called the data warehouse database, where the data is arranged into hierarchical groups, often called dimensions, and into facts and aggregate facts. The combination of facts and dimensions is sometimes called a star schema. The access layer helps users retrieve data.[3]

The main source of the data is cleansed, transformed, catalogued, and made available for use by managers and other business professionals for data mining, online analytical processing, market research and decision support.[4] However, the means to retrieve and analyze data, to extract, transform, and load data, and to manage the data dictionary are also considered essential components of a data warehousing system. Many references to data warehousing use this broader context. Thus, an expanded definition of data warehousing includes business intelligence tools, tools to extract, transform, and load data into the repository, and tools to manage and retrieve metadata.

ELT-based data warehousing

[edit]
ELT-based data warehouse architecture

ELT-based data warehousing gets rid of a separate ETL tool for data transformation. Instead, it maintains a staging area inside the data warehouse itself. In this approach, data gets extracted from heterogeneous source systems and are then directly loaded into the data warehouse, before any transformation occurs. All necessary transformations are then handled inside the data warehouse itself. Finally, the manipulated data gets loaded into target tables in the same data warehouse.

Benefits

[edit]

A data warehouse maintains a copy of information from the source transaction systems. This architectural complexity provides the opportunity to:

Generic

[edit]

The environment for data warehouses and marts includes the following:

In regards to source systems listed above, R. Kelly Rainer states, "A common source for the data in data warehouses is the company's operational databases, which can be relational databases".[5]

Regarding data integration, Rainer states, "It is necessary to extract data from source systems, transform them, and load them into a data mart or warehouse".[5]

Rainer discusses storing data in an organization's data warehouse or data marts.[5]

Metadata is data about data. "IT personnel need information about data sources; database, table, and column names; refresh schedules; and data usage measures".[5]

Today, the most successful companies are those that can respond quickly and flexibly to market changes and opportunities. A key to this response is the effective and efficient use of data and information by analysts and managers.[5] A "data warehouse" is a repository of historical data that is organized by the subject to support decision-makers in the organization.[5] Once data is stored in a data mart or warehouse, it can be accessed.

[edit]

Adata mart is a simple form of a data warehouse that is focused on a single subject (or functional area), hence they draw data from a limited number of sources such as sales, finance or marketing. Data marts are often built and controlled by a single department within an organization. The sources could be internal operational systems, a central data warehouse, or external data.[6] Denormalization is the norm for data modeling techniques in this system. Given that data marts generally cover only a subset of the data contained in a data warehouse, they are often easier and faster to implement.

Difference between data warehouse and data mart
Attribute Data warehouse Data mart
Scope of the data enterprise-wide department-wide
Number of subject areas multiple single
How difficult to build difficult easy
How much time takes to build more less
Amount of memory larger limited

Types of data marts include dependent, independent, and hybrid data marts.[clarification needed]

Online analytical processing (OLAP) is characterized by a relatively low volume of transactions. Queries are often very complex and involve aggregations. For OLAP systems, response time is an effective measure. OLAP applications are widely used by Data Mining techniques. OLAP databases store aggregated, historical data in multi-dimensional schemas (usually star schemas). OLAP systems typically have a data latency of a few hours, as opposed to data marts, where latency is expected to be closer to one day. The OLAP approach is used to analyze multidimensional data from multiple sources and perspectives. The three basic operations in OLAP are Roll-up (Consolidation), Drill-down, and Slicing & Dicing.

Online transaction processing (OLTP) is characterized by a large number of short on-line transactions (INSERT, UPDATE, DELETE). OLTP systems emphasize very fast query processing and maintaining data integrity in multi-access environments. For OLTP systems, effectiveness is measured by the number of transactions per second. OLTP databases contain detailed and current data. The schema used to store transactional databases is the entity model (usually 3NF).[7] Normalization is the norm for data modeling techniques in this system.

Predictive analytics is about finding and quantifying hidden patterns in the data using complex mathematical models that can be used to predict future outcomes. Predictive analysis is different from OLAP in that OLAP focuses on historical data analysis and is reactive in nature, while predictive analysis focuses on the future. These systems are also used for customer relationship management (CRM).

History

[edit]

The concept of data warehousing dates back to the late 1980s[8] when IBM researchers Barry Devlin and Paul Murphy developed the "business data warehouse". In essence, the data warehousing concept was intended to provide an architectural model for the flow of data from operational systems to decision support environments. The concept attempted to address the various problems associated with this flow, mainly the high costs associated with it. In the absence of a data warehousing architecture, an enormous amount of redundancy was required to support multiple decision support environments. In larger corporations, it was typical for multiple decision support environments to operate independently. Though each environment served different users, they often required much of the same stored data. The process of gathering, cleaning and integrating data from various sources, usually from long-term existing operational systems (usually referred to as legacy systems), was typically in part replicated for each environment. Moreover, the operational systems were frequently reexamined as new decision support requirements emerged. Often new requirements necessitated gathering, cleaning and integrating new data from "data marts" that was tailored for ready access by users.

Additionally, with the publication of The IRM Imperative (Wiley & Sons, 1991) by James M. Kerr, the idea of managing and putting a dollar value on an organization's data resources and then reporting that value as an asset on a balance sheet became popular. In the book, Kerr described a way to populate subject-area databases from data derived from transaction-driven systems to create a storage area where summary data could be further leveraged to inform executive decision-making. This concept served to promote further thinking of how a data warehouse could be developed and managed in a practical way within any enterprise.

Key developments in early years of data warehousing:

Information storage

[edit]

Facts

[edit]

A fact is a value, or measurement, which represents a fact about the managed entity or system.

Facts, as reported by the reporting entity, are said to be at raw level; e.g., in a mobile telephone system, if a BTS (base transceiver station) receives 1,000 requests for traffic channel allocation, allocates for 820, and rejects the remaining, it would report three facts or measurements to a management system:

Facts at the raw level are further aggregated to higher levels in various dimensions to extract more service or business-relevant information from it. These are called aggregates or summaries or aggregated facts.

For instance, if there are three BTS in a city, then the facts above can be aggregated from the BTS to the city level in the network dimension. For example:

Dimensional versus normalized approach for storage of data

[edit]

There are three or more leading approaches to storing data in a data warehouse – the most important approaches are the dimensional approach and the normalized approach.

The dimensional approach refers to Ralph Kimball's approach in which it is stated that the data warehouse should be modeled using a Dimensional Model/star schema. The normalized approach, also called the 3NF model (Third Normal Form), refers to Bill Inmon's approach in which it is stated that the data warehouse should be modeled using an E-R model/normalized model.[22]

Dimensional approach

[edit]

In a dimensional approach, transaction data is partitioned into "facts", which are generally numeric transaction data, and "dimensions", which are the reference information that gives context to the facts. For example, a sales transaction can be broken up into facts such as the number of products ordered and the total price paid for the products, and into dimensions such as order date, customer name, product number, order ship-to and bill-to locations, and salesperson responsible for receiving the order.

A key advantage of a dimensional approach is that the data warehouse is easier for the user to understand and to use. Also, the retrieval of data from the data warehouse tends to operate very quickly.[16] Dimensional structures are easy to understand for business users, because the structure is divided into measurements/facts and context/dimensions. Facts are related to the organization's business processes and operational system whereas the dimensions surrounding them contain context about the measurement (Kimball, Ralph 2008). Another advantage offered by dimensional model is that it does not involve a relational database every time. Thus, this type of modeling technique is very useful for end-user queries in data warehouse.

The model of facts and dimensions can also be understood as a data cube.[23] Where the dimensions are the categorical coordinates in a multi-dimensional cube, the fact is a value corresponding to the coordinates.

The main disadvantages of the dimensional approach are the following:

  1. To maintain the integrity of facts and dimensions, loading the data warehouse with data from different operational systems is complicated.
  2. It is difficult to modify the data warehouse structure if the organization adopting the dimensional approach changes the way in which it does business.

Normalized approach

[edit]

In the normalized approach, the data in the data warehouse are stored following, to a degree, database normalization rules. Tables are grouped together by subject areas that reflect general data categories (e.g., data on customers, products, finance, etc.). The normalized structure divides data into entities, which creates several tables in a relational database. When applied in large enterprises the result is dozens of tables that are linked together by a web of joins. Furthermore, each of the created entities is converted into separate physical tables when the database is implemented (Kimball, Ralph 2008). The main advantage of this approach is that it is straightforward to add information into the database. Some disadvantages of this approach are that, because of the number of tables involved, it can be difficult for users to join data from different sources into meaningful information and to access the information without a precise understanding of the sources of data and of the data structure of the data warehouse.

Both normalized and dimensional models can be represented in entity–relationship diagrams as both contain joined relational tables. The difference between the two models is the degree of normalization (also known as Normal Forms). These approaches are not mutually exclusive, and there are other approaches. Dimensional approaches can involve normalizing data to a degree (Kimball, Ralph 2008).

InInformation-Driven Business,[24] Robert Hillard proposes an approach to comparing the two approaches based on the information needs of the business problem. The technique shows that normalized models hold far more information than their dimensional equivalents (even when the same fields are used in both models) but this extra information comes at the cost of usability. The technique measures information quantity in terms of information entropy and usability in terms of the Small Worlds data transformation measure.[25]

Design methods

[edit]

Bottom-up design

[edit]

In the bottom-up approach, data marts are first created to provide reporting and analytical capabilities for specific business processes. These data marts can then be integrated to create a comprehensive data warehouse. The data warehouse bus architecture is primarily an implementation of "the bus", a collection of conformed dimensions and conformed facts, which are dimensions that are shared (in a specific way) between facts in two or more data marts.[26]

Top-down design

[edit]

The top-down approach is designed using a normalized enterprise data model. "Atomic" data, that is, data at the greatest level of detail, are stored in the data warehouse. Dimensional data marts containing data needed for specific business processes or specific departments are created from the data warehouse.[27]

Hybrid design

[edit]

Data warehouses often resemble the hub and spokes architecture. Legacy systems feeding the warehouse often include customer relationship management and enterprise resource planning, generating large amounts of data. To consolidate these various data models, and facilitate the extract transform load process, data warehouses often make use of an operational data store, the information from which is parsed into the actual data warehouse. To reduce data redundancy, larger systems often store the data in a normalized way. Data marts for specific reports can then be built on top of the data warehouse.

A hybrid (also called ensemble) data warehouse database is kept on third normal form to eliminate data redundancy. A normal relational database, however, is not efficient for business intelligence reports where dimensional modelling is prevalent. Small data marts can shop for data from the consolidated warehouse and use the filtered, specific data for the fact tables and dimensions required. The data warehouse provides a single source of information from which the data marts can read, providing a wide range of business information. The hybrid architecture allows a data warehouse to be replaced with a master data management repository where operational (not static) information could reside.

The data vault modeling components follow hub and spokes architecture. This modeling style is a hybrid design, consisting of the best practices from both third normal form and star schema. The data vault model is not a true third normal form, and breaks some of its rules, but it is a top-down architecture with a bottom up design. The data vault model is geared to be strictly a data warehouse. It is not geared to be end-user accessible, which, when built, still requires the use of a data mart or star schema-based release area for business purposes.

Characteristics

[edit]

There are basic features that define the data in the data warehouse that include subject orientation, data integration, time-variant, nonvolatile data, and data granularity.

Subject-oriented

[edit]

Unlike the operational systems, the data in the data warehouse revolves around the subjects of the enterprise. Subject orientation is not database normalization. Subject orientation can be really useful for decision-making. Gathering the required objects is called subject-oriented.

Integrated

[edit]

The data found within the data warehouse is integrated. Since it comes from several operational systems, all inconsistencies must be removed. Consistencies include naming conventions, measurement of variables, encoding structures, physical attributes of data, and so forth.

Time-variant

[edit]

While operational systems reflect current values as they support day-to-day operations, data warehouse data represents a long time horizon (up to 10 years) which means it stores mostly historical data. It is mainly meant for data mining and forecasting. (E.g. if a user is searching for a buying pattern of a specific customer, the user needs to look at data on the current and past purchases.)[28]

Nonvolatile

[edit]

The data in the data warehouse is read-only, which means it cannot be updated, created, or deleted (unless there is a regulatory or statutory obligation to do so).[29]

Options

[edit]

Aggregation

[edit]

In the data warehouse process, data can be aggregated in data marts at different levels of abstraction. The user may start looking at the total sale units of a product in an entire region. Then the user looks at the states in that region. Finally, they may examine the individual stores in a certain state. Therefore, typically, the analysis starts at a higher level and drills down to lower levels of details.[28]

Virtualization

[edit]

With data virtualization, the data used remains in its original locations and real-time access is established to allow analytics across multiple sources creating a virtual data warehouse. This can aid in resolving some technical difficulties such as compatibility problems when combining data from various platforms, lowering the risk of error caused by faulty data, and guaranteeing that the newest data is used. Furthermore, avoiding the creation of a new database containing personal information can make it easier to comply with privacy regulations. However, with data virtualization, the connection to all necessary data sources must be operational as there is no local copy of the data, which is one of the main drawbacks of the approach.[30]

Architecture

[edit]

The different methods used to construct/organize a data warehouse specified by an organization are numerous. The hardware utilized, software created and data resources specifically required for the correct functionality of a data warehouse are the main components of the data warehouse architecture. All data warehouses have multiple phases in which the requirements of the organization are modified and fine-tuned.[31]

Versus operational system

[edit]

Operational systems are optimized for the preservation of data integrity and speed of recording of business transactions through use of database normalization and an entity–relationship model. Operational system designers generally follow Codd's 12 rulesofdatabase normalization to ensure data integrity. Fully normalized database designs (that is, those satisfying all Codd rules) often result in information from a business transaction being stored in dozens to hundreds of tables. Relational databases are efficient at managing the relationships between these tables. The databases have very fast insert/update performance because only a small amount of data in those tables is affected each time a transaction is processed. To improve performance, older data are usually periodically purged from operational systems.

Data warehouses are optimized for analytic access patterns. Analytic access patterns generally involve selecting specific fields and rarely if ever select *, which selects all fields/columns, as is more common in operational databases. Because of these differences in access patterns, operational databases (loosely, OLTP) benefit from the use of a row-oriented DBMS whereas analytics databases (loosely, OLAP) benefit from the use of a column-oriented DBMS. Unlike operational systems which maintain a snapshot of the business, data warehouses generally maintain an infinite history which is implemented through ETL processes that periodically migrate data from the operational systems over to the data warehouse.

Evolution in organization use

[edit]

These terms refer to the level of sophistication of a data warehouse:

Offline operational data warehouse
Data warehouses in this stage of evolution are updated on a regular time cycle (usually daily, weekly or monthly) from the operational systems and the data is stored in an integrated reporting-oriented database.
Offline data warehouse
Data warehouses at this stage are updated from data in the operational systems on a regular basis and the data warehouse data are stored in a data structure designed to facilitate reporting.
On-time data warehouse
Online Integrated Data Warehousing represent the real-time Data warehouses stage data in the warehouse is updated for every transaction performed on the source data
Integrated data warehouse
These data warehouses assemble data from different areas of business, so users can look up the information they need across other systems.[32]

See also

[edit]

References

[edit]
  1. ^ Dedić, Nedim; Stanier, Clare (2016). Hammoudi, Slimane; Maciaszek, Leszek; Missikoff, Michele M. Missikoff; Camp, Olivier; Cordeiro, José (eds.). An Evaluation of the Challenges of Multilingualism in Data Warehouse Development. International Conference on Enterprise Information Systems, 25–28 April 2016, Rome, Italy (PDF). Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016). Vol. 1. SciTePress. pp. 196–206. doi:10.5220/0005858401960206. ISBN 978-989-758-187-8. Archived (PDF) from the original on 2018-05-22.
  • ^ "What is a Data Warehouse? | Key Concepts | Amazon Web Services". Amazon Web Services, Inc. Retrieved 2023-02-13.
  • ^ Patil, Preeti S.; Srikantha Rao; Suryakant B. Patil (2011). "Optimization of Data Warehousing System: Simplification in Reporting and Analysis". IJCA Proceedings on International Conference and Workshop on Emerging Trends in Technology (ICWET). 9 (6). Foundation of Computer Science: 33–37.
  • ^ Marakas & O'Brien 2009
  • ^ a b c d e f Rainer, R. Kelly; Cegielski, Casey G. (2012-05-01). Introduction to Information Systems: Enabling and Transforming Business, 4th Edition (Kindle ed.). Wiley. pp. 127, 128, 130, 131, 133. ISBN 978-1118129401.
  • ^ "Data Mart Concepts". Oracle. 2007.
  • ^ "OLTP vs. OLAP". Datawarehouse4u.Info. 2009. We can divide IT systems into transactional (OLTP) and analytical (OLAP). In general, we can assume that OLTP systems provide source data to data warehouses, whereas OLAP systems help to analyze it.
  • ^ "The Story So Far". 2002-04-15. Archived from the original on 2008-07-08. Retrieved 2008-09-21.
  • ^ a b Kimball 2013, pg. 15
  • ^ "The audit of the Data Warehouse Framework" (PDF). Archived (PDF) from the original on 2012-05-12.
  • ^ Kempe, Shannon (2012-08-23). "A Short History of Data Warehousing". DATAVERSITY. Retrieved 2024-05-10.
  • ^ "Data Warehouse – What It Is & Why It Matters". www.sas.com. Retrieved 2024-05-10.
  • ^ Paul Gillin (February 20, 1984). "Will Teradata revive a market?". Computer World. pp. 43, 48. Retrieved 2017-03-13.
  • ^ Devlin, B. A.; Murphy, P. T. (1988). "An architecture for a business and information system". IBM Systems Journal. 27: 60–80. doi:10.1147/sj.271.0060.
  • ^ Inmon, Bill (1992). Building the Data Warehouse. Wiley. ISBN 0-471-56960-7.
  • ^ a b Kimball, Ralph (2011). The Data Warehouse Toolkit. Wiley. p. 237. ISBN 978-0-470-14977-5.
  • ^ Introduction to the focal framework
  • ^ Data Modeling Meetup Munich: An Introduction to Focal with Patrik Lager - YouTube
  • ^ Regardt, Olle; Rönnbäck, Lars; Bergholtz, Maria; Johannesson, Paul; Wohed, Petia (2009). "Anchor Modeling". Proceedings of the 28th International Conference on Conceptual Modeling. ER '09. Gramado, Brazil: Springer-Verlag: 234–250. ISBN 978-3-642-04839-5.
  • ^ A short intro to #datavault 2.0
  • ^ Data Vault 2.0 Being Announced
  • ^ Golfarelli, Matteo; Maio, Dario; Rizzi, Stefano (1998-06-01). "The dimensional fact model: a conceptual model for data warehouses". International Journal of Cooperative Information Systems. 07 (2n03): 215–247. doi:10.1142/S0218843098000118. ISSN 0218-8430.
  • ^ "Introduction to Data Cubes".
  • ^ Hillard, Robert (2010). Information-Driven Business. Wiley. ISBN 978-0-470-62577-4.
  • ^ "Information Theory & Business Intelligence Strategy - Small Worlds Data Transformation Measure - MIKE2.0, the open source methodology for Information Development". Mike2.openmethodology.org. Retrieved 2013-06-14.
  • ^ "The Bottom-Up Misnomer - DecisionWorks Consulting". DecisionWorks Consulting. 17 September 2003. Retrieved 2016-03-06.
  • ^ Gartner, Of Data Warehouses, Operational Data Stores, Data Marts and Data Outhouses, Dec 2005
  • ^ a b Paulraj., Ponniah (2010). Data warehousing fundamentals for IT professionals. Ponniah, Paulraj. (2nd ed.). Hoboken, N.J.: John Wiley & Sons. ISBN 9780470462072. OCLC 662453070.
  • ^ Inmon, William H. (2005). Building the data warehouse (4th ed.). Indianapolis, IN: Wiley Pub. ISBN 9780764599446. OCLC 61762085.
  • ^ Paiho, Satu; Tuominen, Pekka; Rökman, Jyri; Ylikerälä, Markus; Pajula, Juha; Siikavirta, Hanne (2022). "Opportunities of collected city data for smart cities". IET Smart Cities. 4 (4): 275–291. doi:10.1049/smc2.12044. S2CID 253467923.
  • ^ Gupta, Satinder Bal; Mittal, Aditya (2009). Introduction to Database Management System. Laxmi Publications. ISBN 9788131807248.
  • ^ "Data Warehouse". 6 April 2019.
  • Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Data_warehouse&oldid=1223233722"

    Categories: 
    Data management
    Data warehousing
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from March 2017
    Articles needing additional references from July 2015
    All articles needing additional references
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
     



    This page was last edited on 10 May 2024, at 18:54 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki