Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Examples  





3 Applications  





4 Related phenomena  





5 See also  





6 References  














Deflagration to detonation transition







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Deflagration to detonation transition (DDT) refers to a phenomenon in ignitable mixtures of a flammable gas and air (oroxygen) when a sudden transition takes place from a deflagration type of combustion to a detonation type of explosion.

Description[edit]

Adeflagration is characterized by a subsonic flame propagation velocity, typically far below 100 metres per second (220 mph), and relatively modest overpressures, typically below 50 kilopascals (7.3 psi). The main mechanism of combustion propagation is of a flame front that moves forward through the gas mixture - in technical terms the reaction zone (chemical combustion) progresses through the medium by processes of diffusionofheat and mass. In its most benign form, a deflagration may simply be a flash fire.

In contrast, a detonation is characterized by supersonic flame propagation velocities, perhaps up to 2,000 metres per second (4,500 mph), and substantial overpressures, up to 2 megapascals (290 psi). The main mechanism of detonation propagation is of a powerful pressure wave that compresses the unburnt gas ahead of the wave to a temperature above the autoignition temperature. In technical terms, the reaction zone (chemical combustion) is a self-driven shock wave where the reaction zone and the shock are coincident, and the chemical reaction is initiated by the compressive heating caused by the shock wave. The process is similar to ignition in a Diesel engine, but much more sudden and violent.

Under certain conditions, mainly in terms of geometrical conditions (such as partial confinement and many obstacles in the flame path that cause turbulent flame eddy currents), a subsonic flame front may accelerate to supersonic speed, transitioning from deflagration to detonation. The exact mechanism is not fully understood,[1] and while existing theories are able to explain and model both deflagrations and detonations, there is no theory at present which can predict the transition phenomenon.

Examples[edit]

A deflagration to detonation transition has been a feature of several major industrial accidents:

Applications[edit]

The phenomenon is exploited in pulse detonation engines, because a detonation produces a more efficient combustion of the reactants than a deflagration does, i.e. giving a higher yields. Such engines typically employ a Shchelkin spiral in the combustion chamber to facilitate the deflagration to detonation transition.[2][3]

The mechanism has also found military use in thermobaric weapons.

Related phenomena[edit]

An analogous deflagration to detonation transition (DDT) has also been proposed for thermonuclear reactions responsible for supernovae initiation.[4] This process has been called a "carbon detonation".

See also[edit]

References[edit]

  1. ^ "Chapter 6: Detonation". Gexcon AS. Archived from the original on October 4, 2011.
  • ^ New, TH; PK Panicker; FK Lu; H M Tsai (2006). Experimental Investigations on DDT Enhancements by Schelkin Spirals in a PDE (PDF). 44th AIAA Aerospace Sciences Meeting and Exhibit 9–12 January 2006, Reno, Nevada.
  • ^ Schultz, E; E Wintenberger; J Shepherd (1999). Investigation of Deflagration to Detonation Transition for Application to Pulse Detonation Engine Ignition Systems (PDF). Proceedings of the 16th JANNAF Propulsion Symposium.
  • ^ Gamezo, Vadim N.; Oran ES (2008). Mechanisms for Detonation Initiation in Type Ia Supernovae. American Astronomical Society, AAS Meeting #211, #162.08. Bibcode:2008AAS...21116208G.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Deflagration_to_detonation_transition&oldid=1159979118"

    Categories: 
    Combustion
    Industrial fires and explosions
    Explosives engineering
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from February 2017
    All articles needing additional references
    Articles containing potentially dated statements from 2023
    All articles containing potentially dated statements
     



    This page was last edited on 13 June 2023, at 19:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki