Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formation  





2 Mineralogy and occurrence  





3 As a gem  





4 Etymology and history  





5 Potential uses  





6 References  














Diopside






العربية
Azərbaycanca
Беларуская
Български
Català
Čeština
Deutsch
Español
Esperanto
Euskara
فارسی
Français

Հայերեն
Hrvatski
Italiano
עברית

Қазақша
Кыргызча
Lietuvių
Magyar

Nederlands

Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Саха тыла
Slovenčina
Slovenščina
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Diopside
Diopside – Bellecombe, Châtillon, Aosta Valley, Italy
General
CategoryInosilicate mineral
Formula
(repeating unit)
MgCaSi2O6
IMA symbolDi[1]
Strunz classification9.DA.15
Crystal systemMonoclinic
Crystal classPrismatic (2/m)
(same H-M symbol)
Space groupC2/c
Unit cella = 9.746 Å, b = 8.899 Å
c = 5.251 Å; β = 105.79°; Z = 4
Identification
ColorCommonly light to dark green; may be blue, brown, colorless, white to snow white, grey, pale violet
Crystal habitShort prismatic crystals common, may be granular, columnar, massive
TwinningSimple and multiple twins common on {100} and {001}
CleavageDistinct/good on {110}
FractureIrregular/uneven, conchoidal
TenacityBrittle
Mohs scale hardness5.5–6.5
LusterVitreous to dull
Streakwhite
Specific gravity3.278
Optical propertiesBiaxial (+)
Refractive indexnα= 1.663 – 1.699, nβ= 1.671 – 1.705, nγ= 1.693 – 1.728
Birefringenceδ = 0.030
2V angleMeasured: 58° to 63°
DispersionWeak to distinct, r>v
Melting point1391 °C
References[2][3][4]

Diopside is a monoclinic pyroxene mineral with composition MgCaSi
2
O
6
. It forms complete solid solution series with hedenbergite (FeCaSi
2
O
6
) and augite, and partial solid solutions with orthopyroxene and pigeonite. It forms variably colored, but typically dull green crystals in the monoclinic prismatic class. It has two distinct prismatic cleavages at 87 and 93° typical of the pyroxene series. It has a Mohs hardness of six, a Vickers hardness of 7.7 GPa at a load of 0.98 N,[5] and a specific gravity of 3.25 to 3.55. It is transparent to translucent with indices of refraction of nα=1.663–1.699, nβ=1.671–1.705, and nγ=1.693–1.728. The optic angle is 58° to 63°.

Formation[edit]

Diopside crystal from De Kalb, New York (size: 4.3 x 3.3 x 1.9 cm)

Diopside is found in ultramafic (kimberlite and peridotite) igneous rocks, and diopside-rich augite is common in mafic rocks, such as olivine basalt and andesite. Diopside is also found in a variety of metamorphic rocks, such as in contact metamorphosed skarns developed from high silica dolomites. It is an important mineral in the Earth's mantle and is common in peridotite xenoliths erupted in kimberlite and alkali basalt.

Mineralogy and occurrence[edit]

A green diopside found in Outokumpu, Finland

Diopside is a precursor of chrysotile (white asbestos) by hydrothermal alteration and magmatic differentiation;[6] it can react with hydrous solutions of magnesium and chlorine to yield chrysotile by heating at 600 °C for three days.[7] Some vermiculite deposits, most notably those in Libby, Montana, are contaminated with chrysotile (as well as other forms of asbestos) that formed from diopside.[8]

At relatively high temperatures, there is a miscibility gap between diopside and pigeonite, and at lower temperatures, between diopside and orthopyroxene. The calcium/(calcium+magnesium+iron) ratio in diopside that formed with one of these other two pyroxenes is particularly sensitive to temperature above 900 °C, and compositions of diopside in peridotite xenoliths have been important in reconstructions of temperatures in the Earth's mantle.

Chrome diopside ((Ca,Na,Mg,Fe,Cr)
2
(Si,Al)
2
O
6
) is a common constituent of peridotite xenoliths, and dispersed grains are found near kimberlite pipes, and as such are a prospecting indicator for diamonds. Occurrences are reported in Canada, South Africa, Russia, Brazil, and a wide variety of other locations. In the US, chromian diopside localities are described in the serpentinite belt in northern California, in kimberlite in the Colorado-Wyoming State Line district, in kimberlite in the Iron Mountain district, Wyoming, in lamprophyre at Cedar Mountain in Wyoming, and in numerous anthills and outcrops of the Tertiary Bishop Conglomerate in the Green River Basin of Wyoming. Much chromian diopside from the Green River Basin localities and several of the State Line Kimberlites have been gem in character.[9][citation needed]

As a gem[edit]

Gemstone quality diopside is found in two forms: black star diopside and chrome diopside (which includes chromium, giving it a rich green color). At 5.5–6.5 on the Mohs scale, chrome diopside is relatively soft to scratch. Due to the deep green color of the gem, they are sometimes referred to as Siberian emeralds, although they are on a gemological level completely unrelated, emerald being a precious stone and diopside being a semi-precious stone.[10]

Green diopside crystals included within a white feldspar matrix are also sold as gemstones, usually as beads or cabochons. This stone is often marketed as 'green spot jasper' or green spot stone'.

Violane is a manganese-rich variety of diopside, violet to light blue in color.[11]

Etymology and history[edit]

Diopside derives its name from the Greek dis, "twice", and òpsè, "face" in reference to the two ways of orienting the vertical prism.

Diopside was discovered and first described about 1800, by Brazilian naturalist Jose Bonifacio de Andrada e Silva.

Potential uses[edit]

Diopside based ceramics and glass-ceramics have potential applications in various technological areas. A diopside based glass-ceramic named 'silceram' was produced by scientists from Imperial College, UK during the 1980s from blast furnace slag and other waste products. They also produced glass-ceramic is a potential structural material. Similarly, diopside based ceramics and glass-ceramics have potential applications in the field of biomaterials, nuclear waste immobilization and sealing materials in solid oxide fuel cells.

References[edit]

  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  • ^ C. D. Gribble, ed. (1988). "The Silicate Minerals". Rutley's Elements of Mineralogy (27th ed.). London: Unwin Hyman Ltd. p. 378. ISBN 0-04-549011-2.
  • ^ Mindat page for Diopside
  • ^ Handbook of Mineralogy
  • ^ M M Smedskjaer; M Jensen; Y-Z Yue (2008). "Theoretical calculation and measurement of the hardness of diopside". Journal of the American Ceramic Society. 91 (2): 514–518. doi:10.1111/j.1551-2916.2007.02166.x.
  • ^ A L Boettcher (1967). "The Rainy Creek alkaline-ultramafic igneous complex near Libby, Montana. I: Ultramafic rocks and fenite". Journal of Geology. 75 (5): 536–553. Bibcode:1967JG.....75..526B. doi:10.1086/627280. S2CID 128604912.
  • ^ Eugenio Barrese; Elena Belluso; Francesco Abbona (1 February 1997). "On the transformation of synthetic diopside into chrysotile". European Journal of Mineralogy. 9 (1): 83–87. doi:10.1127/ejm/9/1/0083.
  • ^ "Asbestos in Your Home". United States Environmental Protection Agency. 2003. Archived from the original on October 8, 2006. Retrieved 2007-11-20.
  • ^ Hausel, W. Dan (2006). Geology and Geochemistry of the Leucite Hills Lamproitic field, Rocks Springs Uplift, Wyoming. laramie, Wyoming: Wyoming geological survey.
  • ^ Kalotay, Daphne (2010). Russian Winter (First ed.). New York, NY: Harper. pp. 184–185. ISBN 978-0-06-196216-5.
  • ^ Mindat page for Violane

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Diopside&oldid=1219816935"

    Categories: 
    Pyroxene group
    Magnesium minerals
    Calcium minerals
    Inosilicates
    Monoclinic minerals
    Minerals in space group 15
    Luminescent minerals
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2012
    Commons category link is on Wikidata
    Articles with EMU identifiers
     



    This page was last edited on 20 April 2024, at 00:44 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki