Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Typical operation  





2 Historical uses  





3 List of drop towers  





4 See also  





5 References  





6 External links  














Drop tube






Català
Deutsch
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inphysics and materials science, a drop towerordrop tube is a structure used to produce a controlled period of weightlessness for an object under study. Air bags, polystyrene pellets, and magnetic or mechanical brakes are sometimes used to arrest the fall of the experimental payload. In other cases, high-speed impact with a substrate at the bottom of the tower is an intentional part of the experimental protocol.

Not all such facilities are towers: NASA Glenn's Zero Gravity Research Facility is based on a vertical shaft, extending to 510 feet (155 m) below ground level.

Typical operation

[edit]
A view down the tube of NASA Glenn's 5 second Zero Gravity Facility.
A view down the shaft of NASA Glenn's 2.2 second drop tower. A large (deflated) air bag is at the bottom.

For a typical materials science experiment, a sample of the material under study is loaded into the top of the drop tube, which is filled with inert gas or evacuated to create a low-pressure environment. Following any desired preprocessing (e.g. induction heating to melt a metal alloy), the sample is released to fall to the bottom of the tube. During its flight or upon impact the sample can be characterized with instruments such as cameras and pyrometers.

Drop towers are also commonly used in combustion research. For this work, oxygen must be present and the payload may be enclosed in a drag shield to isolate it from high-speed "wind" as the apparatus accelerates toward the bottom of the tower. See a video of a microgravity combustion experiment in the NASA Glenn Five Second Drop Facility at [1].

Fluid physics experiments and development and testing of space-based hardware can also be conducted using a drop tower. Sometimes, the ground-based research performed with a drop tower serves as a prelude to more ambitious, in-flight investigation; much longer periods of weightlessness can be achieved with parabolic-flight-path aircraft or with space-based laboratories aboard the Space Shuttle or the International Space Station.

The duration of free-fall produced in a drop tube depends on the length of the tube and its degree of internal evacuation. The 105-meter drop tubeatMarshall Space Flight Center produces 4.6 seconds of weightlessness when it is fully evacuated. In the drop facility Fallturm BremenatUniversity of Bremenacatapult can be used to throw the experiment upwards to prolong the weightlessness from 4.74 to nearly 9.3 seconds.[1][2] Negating the physical space needed for the initial acceleration, this technique doubles the effective period of weightlessness. The NASA Glenn Research Center has a 5 second drop tower (The Zero Gravity Facility) and a 2.2 second drop tower (The 2.2 Second Drop Tower).

Much of the operating cost of a drop tower is due to the need for evacuation of the drop tube, to eliminate the effect of aerodynamic drag. Alternatively the experiment is placed inside an outer box (the drag shield) for which, due to its weight, during its fall the reduction of acceleration due to air drag is less.

Historical uses

[edit]

Though the story may be apocryphal, Galileo is popularly thought to have used the Leaning Tower of Pisa as a drop tower to demonstrate that falling bodies accelerate at the same constant rate regardless of their mass.

Drop towers called shot towers were once useful for making lead shot. A short period of weightlessness allows molten lead to solidify into a quasi-perfect sphere by the time it reaches the floor of the tower.

List of drop towers

[edit]

See also

[edit]

References

[edit]
  1. ^ VON KAMPEN, P., KÖNEMANN, T., and RATH, H.J. (2010). The drop tower bremen – an overview, in COSPAR, Proceedings of the 38th COSPAR Scientific Assembly, Bremen, Germany, 15–18 July 2010. p. 3587. Available from: http://adsabs.harvard.edu/abs/2010cosp...38.3587V [Accessed: 14 June 2011]
  • ^ KÖNEMANN, T., VON KAMPEN, P., and RATH, H.J. (2010). The drop tower bremen – experiment operation, in COSPSAR, Proceedings of the 38th COSPAR Scientific Assembly, Bremen, Germany, 15–18 July 2010. volume 38 of COSPAR, Plenary Meeting. p. 3588. Available from: http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010cosp...38.3588K&link_type=ARTICLE&db_key=AST&high= [Accessed: 14 June 2011]
  • ^ http://www.mext.go.jp/a_menu/kaihatu/space/kaihatsushi/detail/1299905.htm Archived 2012-03-20 at the Wayback Machine [In Japanese]
  • ^ "宇宙環境利用". www.hastic.jp. Retrieved 2020-01-14.
  • ^ Zhang, X.; Yuan, L.; WU; Tian, L.; YAO, K. (2005). "Some key technics of drop tower experiment device of national microgravity laboratory (China) (NMLC)". Science in China Series E: Technological Sciences. 48 (3): 305–316. Bibcode:2005ScChE..48..305Z. doi:10.1360/102004-21. S2CID 110511662.
  • ^ Jackson, Joanna (2007). A Year in the Life of Kew Gardens. Frances Lincoln Limited. p. 86. ISBN 9780711226838.
  • ^ Steinberg, T. (2008). "Reduced Gravity Testing and Research Capabilities at Queensland University of Technology's New 2.0 Second Drop Tower". Advanced Materials Research. 32: 21–24. doi:10.4028/www.scientific.net/amr.32.21. S2CID 44240229.
  • ^ Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong (2014). "Drop Tower Facility at Queensland University of Technology". Cosp. 40: G0.2–1–14-1. Bibcode:2014cosp...40E2560P.
  • [edit]

    Media related to Drop tubes at Wikimedia Commons


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Drop_tube&oldid=1209562473"

    Categories: 
    Laboratory equipment
    Towers
    Weightlessness
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description matches Wikidata
    Commons category link from Wikidata
     



    This page was last edited on 22 February 2024, at 14:20 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki