Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Fluorescent dyes  



1.1  Quantitative tracing  





1.2  Tracing methods  







2 Applications  



2.1  Water tracing  





2.2  Medicine and biology  







3 See also  





4 References  














Dye tracing






Deutsch
فارسی
Français
Português

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Dye tracing is a method of tracking and tracing various flows using dye as a flow tracer when added to a liquid. Dye tracing may be used to analyse the flow of the liquid or the transport of objects within the liquid. Dye tracking may be either qualitative, showing the presence of a particular flow, or quantitative, when the amount of the traced dye is measured by special instruments.

Fluorescent dyes

[edit]
Fluorescein in ammonia solution (2)

Fluorescent dyes are often used in situations where there is insufficient lighting (e.g., sewers or cave waters), and where precise quantitative data are required (measured by a fluorometer).

In 1871, fluorescein was among the first fluorescent dyes to be developed. Its disodium salt (under the trademark "uranine") was developed several years later and still remains among the best tracer dyes.[1]

Other popular tracer dyes are rhodamine, pyranine and sulforhodamine B.

Quantitative tracing

[edit]

Carbon sampling was the first method of technology-assisted dye tracing that was based on the absorption of dye in charcoal. Charcoal packets may be placed along the expected route of the flow, later the collected dye may be chemically extracted and its amount subjectively evaluated.

Filter fluorometers were the first devices that could detect dye concentrations beyond human eye sensitivity.

Spectrofluorometers, developed in the mid-1980s, made it possible to perform advanced analysis of fluorescence.

Filter fluorometers and spectrofluorometers identify the intensity of fluorescence that is present in a liquid sample. Different dyes and chemicals produce a distinctive wavelength that is determined during analysis.

Tracing methods

[edit]

Each sampling area is analysed by a quantitative instrument to test the background fluorescence.

Each different type of dye has significant performance factors that distinguish them in different environments. These performance factors include:

Depending on the environment, water flows possess certain factors that can affect how a dye performs. Natural fluorescence in a water flow can interfere with certain dyes. The presence of organic material, other chemicals, and sunlight can affect the intensity of dyes.

Applications

[edit]

Water tracing

[edit]

Typical applications of water flow tracing include:[2]

Medicine and biology

[edit]

Dye tracing may be used for the analysis of blood circulation within various parts of the human or animal body. For example, fluorescent angiography, a technique of analysis of circulation in retina is used for diagnosing various eye diseases.

With modern fluorometers, capable of tracking single fluorescent molecules, it is possible to track migrations of single cells tagged by a fluorescent molecule (see fluorescein in biological research). For example, the fluorescent-activated cell sortinginflow cytometry makes it possible to sort out the cells with attached fluorescent molecules from a flow.

See also

[edit]

References

[edit]
  1. ^ An educational website about karst and dye tracing, by Crawford Hydrology Laboratory / Center for Cave and Karst Study in association with Western Kentucky University
  • ^ Water Tracing Dye Technical Bulletin Archived 2007-02-03 at the Wayback Machine

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Dye_tracing&oldid=1179288045"

    Categories: 
    Dyes
    Data collection
    Hydrology
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 9 October 2023, at 03:52 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki