Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Operation  





2 Details  





3 Application  





4 EPROM generations, sizes and types  





5 Gallery  





6 See also  





7 Notes  





8 References  





9 Bibliography  





10 External links  














EPROM






العربية
Azərbaycanca
Български
Català
Čeština
Dansk
Deutsch
Eesti
Español
Euskara
فارسی
Français
Galego

Hrvatski
Bahasa Indonesia
Italiano
עברית
Magyar
Bahasa Melayu
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Shqip
Simple English
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Türkçe
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


An EPROM: the Texas Instruments TMS27C040, a CMOS chip with 4 megabits of storage and 8-bit output (shown here in a 600-mil ceramic dual-in-line package). The TMS27C040 operates at 5 volts, but must be programmed at 13 volts.[1]
  • Memory coherence
  • Cache coherence
  • Memory hierarchy
  • Memory access pattern
  • Memory map
  • Secondary storage
  • MOS memory
  • Continuous availability
  • Areal density (computer storage)
  • Block (data storage)
  • Object storage
  • Direct-attached storage
  • Network-attached storage
  • Single-instance storage
  • Data
  • Structured data
  • Unstructured data
  • Big data
  • Metadata
  • Data compression
  • Data corruption
  • Data cleansing
  • Data degradation
  • Data integrity
  • Data security
  • Data validation
  • Data validation and reconciliation
  • Data recovery
  • Storage
  • Data cluster
  • Directory
  • Shared resource
  • File sharing
  • File system
  • Clustered file system
  • Distributed file system
  • Distributed file system for cloud
  • Distributed data store
  • Distributed database
  • Database
  • Data bank
  • Data storage
  • Data store
  • Data deduplication
  • Data structure
  • Data redundancy
  • Replication (computing)
  • Memory refresh
  • Storage record
  • Information repository
  • Knowledge base
  • Computer file
  • Object file
  • File deletion
  • File copying
  • Backup
  • Core dump
  • Hex dump
  • Data communication
  • Information transfer
  • Temporary file
  • Copy protection
  • Digital rights management
  • Volume (computing)
  • Boot sector
  • Master boot record
  • Volume boot record
  • Disk array
  • Disk image
  • Disk mirroring
  • Disk aggregation
  • Disk partitioning
  • Memory segmentation
  • Locality of reference
  • Logical disk
  • Storage virtualization
  • Virtual memory
  • Memory-mapped file
  • Software entropy
  • Software rot
  • In-memory database
  • In-memory processing
  • Persistence (computer science)
  • Persistent data structure
  • RAID
  • Non-RAID drive architectures
  • Memory paging
  • Bank switching
  • Grid computing
  • Cloud computing
  • Cloud storage
  • Fog computing
  • Edge computing
  • Dew computing
  • Amdahl's law
  • Moore's law
  • Kryder's law
  • Volatile

  • Scratchpad memory
  • DRAM
  • SRAM
  • ReRAM
  • QRAM
  • Content-addressable memory (CAM)
  • Computational RAM
  • VRAM
  • Dual-ported RAM
  • Delay-line memory (1947)
  • Mellon optical memory (1951)
  • Selectron tube (1952)
  • Dekatron
  • T-RAM (2009)
  • Z-RAM (2002–2010)
  • Non-volatile

  • MROM
  • PROM
  • EEPROM
  • ROM cartridge
  • Solid-state storage (SSS)
  • Memory card
  • Programmable metallization cell
  • Memristor
  • PCM (3D XPoint)
  • MRAM
  • Electrochemical RAM (ECRAM)
  • Nano-RAM
  • CBRAM
  • ReRAM
  • FeFET memory
  • Phonograph record
  • Quadruplex videotape
  • Vision Electronic Recording Apparatus
  • Magnetic recording
  • Hard disk drive
  • LaserDisc
  • Compact Disc Digital Audio (CDDA)
  • CD
  • CD Video
  • CD-R
  • CD-RW
  • Video CD
  • Super Video CD
  • Mini CD
  • Nintendo optical discs
  • CD-ROM
  • Hyper CD-ROM
  • DVD
  • DVD+R
  • DVD-Video
  • DVD card
  • DVD-RAM
  • MiniDVD
  • HD DVD
  • Blu-ray
  • Ultra HD Blu-ray
  • Holographic Versatile Disc
  • WORM
  • Racetrack memory
  • NRAM
  • Millipede memory
  • ECRAM
  • Patterned media
  • Holographic data storage
  • 5D optical data storage
  • DNA digital data storage
  • Universal memory
  • Time crystal
  • Quantum memory
  • UltraRAM
  • Punched card (1725)
  • Punched tape (1725)
  • Plugboard
  • Drum memory (1932)
  • Magnetic-core memory (1949)
  • Plated-wire memory (1957)
  • Core rope memory (1960s)
  • Thin-film memory (1962)
  • Disk pack (1962)
  • Twistor memory (~1968)
  • Bubble memory (~1970)
  • Floppy disk (1971)
  • t
  • e
  • AnEPROM (rarely EROM), or erasable programmable read-only memory, is a type of programmable read-only memory (PROM) chip that retains its data when its power supply is switched off. Computer memory that can retrieve stored data after a power supply has been turned off and back on is called non-volatile. It is an array of floating-gate transistors individually programmed by an electronic device that supplies higher voltages than those normally used in digital circuits. Once programmed, an EPROM can be erased by exposing it to strong ultraviolet (UV) light source (such as from a mercury-vapor lamp). EPROMs are easily recognizable by the transparent fused quartz (or on later models resin) window on the top of the package, through which the silicon chip is visible, and which permits exposure to ultraviolet light during erasing.[2] It was invented by Israeli electrical engineer, Dov Frohman in 1971.[3]

    Operation[edit]

    An Intel 1702A EPROM, one of the earliest EPROM types (1971), 256 by 8 bit. The small quartz window admits UV light for erasure.

    Development of the EPROM memory cell started with investigation of faulty integrated circuits where the gate connections of transistors had broken. Stored charge on these isolated gates changes their threshold voltage.

    Following the invention of the MOSFET (metal–oxide–semiconductor field-effect transistor) by Mohamed Atalla and Dawon KahngatBell Labs, presented in 1960, Frank Wanlass studied MOSFET structures in the early 1960s. In 1963, he noted the movement of charge through oxide onto a gate. While he did not pursue it, this idea would later become the basis for EPROM technology.[4]

    In 1967, Dawon Kahng and Simon Min Sze at Bell Labs proposed that the floating gate of a MOSFET could be used for the cell of a reprogrammable ROM (read-only memory).[3] Building on this concept, Dov FrohmanofIntel invented EPROM in 1971,[3] and was awarded U.S. patent 3,660,819 in 1972. Frohman designed the Intel 1702, a 2048-bit EPROM, which was announced by Intel in 1971.[3]

    Each storage location of an EPROM consists of a single field-effect transistor. Each field-effect transistor consists of a channel in the semiconductor body of the device. Source and drain contacts are made to regions at the end of the channel. An insulating layer of oxide is grown over the channel, then a conductive (silicon or aluminum) gate electrode is deposited, and a further thick layer of oxide is deposited over the gate electrode. The floating-gate electrode has no connections to other parts of the integrated circuit and is completely insulated by the surrounding layers of oxide. A control gate electrode is deposited and further oxide covers it.[5]

    To retrieve data from the EPROM, the address represented by the values at the address pins of the EPROM is decoded and used to connect one word (usually an 8-bit byte) of storage to the output buffer amplifiers. Each bit of the word is a 1 or 0, depending on the storage transistor being switched on or off, conducting or non-conducting.

    A cross-section of a floating-gate transistor

    The switching state of the field-effect transistor is controlled by the voltage on the control gate of the transistor. Presence of a voltage on this gate creates a conductive channel in the transistor, switching it on. In effect, the stored charge on the floating gate allows the threshold voltage of the transistor to be programmed.

    Storing data in the memory requires selecting a given address and applying a higher voltage to the transistors. This creates an avalanche discharge of electrons, which have enough energy to pass through the insulating oxide layer and accumulate on the gate electrode. When the high voltage is removed, the electrons are trapped on the electrode.[6] Because of the high insulation value of the silicon oxide surrounding the gate, the stored charge cannot readily leak away and the data can be retained for decades.

    The programming process is not electrically reversible. To erase the data stored in the array of transistors, ultraviolet light is directed onto the die. Photons of the UV light cause ionization within the silicon oxide, which allows the stored charge on the floating gate to dissipate. Since the whole memory array is exposed, all the memory is erased at the same time. The process takes several minutes for UV lamps of convenient sizes; sunlight would erase a chip in weeks, and indoor fluorescent lighting over several years.[7] Generally, the EPROMs must be removed from equipment to be erased, since it is not usually practical to build in a UV lamp to erase parts in-circuit. Electrically Erasable Programmable Read-Only Memory (EEPROM) was developed to provide an electrical erase function and has now mostly displaced ultraviolet-erased parts.

    Details[edit]

    Atmel AT27C010 - an OTP EPROM

    As the quartz window is expensive to make, OTP (one-time programmable) chips were introduced; here, the die is mounted in an opaque package so it cannot be erased after programming – this also eliminates the need to test the erase function, further reducing cost. OTP versions of both EPROMs and EPROM-based microcontrollers are manufactured. However, OTP EPROM (whether separate or part of a larger chip) is being increasingly replaced by EEPROM for small sizes, where the cell cost isn't too important, and flash for larger sizes.

    A programmed EPROM retains its data for a minimum of ten to twenty years,[8] with many still retaining data after 35 or more years, and can be read an unlimited number of times without affecting the lifetime. The erasing window must be kept covered with an opaque label to prevent accidental erasure by the UV found in sunlight or camera flashes. Old PC BIOS chips were often EPROMs, and the erasing window was often covered with an adhesive label containing the BIOS publisher's name, the BIOS revision, and a copyright notice. Often this label was foil-backed to ensure its opacity to UV.

    Erasure of the EPROM begins to occur with wavelengths shorter than 400 nm. Exposure time for sunlight of one week or three years for room fluorescent lighting may cause erasure. The recommended erasure procedure is exposure to UV light at 253.7 nm of at least 15 Ws/cm2, usually achieved in 20 to 30 minutes with the lamp at a distance of about 2.5 cm.[9]

    Erasure can also be accomplished with X-rays:

    Erasure, however, has to be accomplished by non-electrical methods, since the gate electrode is not accessible electrically. Shining ultraviolet light on any part of an unpackaged device causes a photocurrent to flow from the floating gate back to the silicon substrate, thereby discharging the gate to its initial, uncharged condition (photoelectric effect). This method of erasure allows complete testing and correction of a complex memory array before the package is finally sealed. Once the package is sealed, information can still be erased by exposing it to X radiation in excess of 5*104 rads,[a] a dose which is easily attained with commercial X-ray generators.[10]

    In other words, to erase your EPROM, you would first have to X-ray it and then put it in an oven at about 600 degrees Celsius (to anneal semiconductor alterations caused by the X-rays). The effects of this process on the reliability of the part would have required extensive testing so they decided on the window instead.[11]

    EPROMs have a limited but large number of erase cycles; the silicon dioxide around the gates accumulates damage from each cycle, making the chip unreliable after several thousand cycles. EPROM programming is slow compared to other forms of memory. Because higher-density parts have little exposed oxide between the layers of interconnects and gate, ultraviolet erasing becomes less practical for very large memories. Even dust inside the package can prevent some cells from being erased.[12]

    Application[edit]

    For large volumes of parts (thousands of pieces or more), mask-programmed ROMs are the lowest cost devices to produce. However, these require many weeks lead time to make, since the artwork or design in an IC mask layer or photomask must be altered to store data on the ROMs. Initially, it was thought that the EPROM would be too expensive for mass production use and that it would be confined to development only. It was soon found that small-volume production was economical with EPROM parts, particularly when the advantage of rapid upgrades of firmware was considered.

    Some microcontrollers, from before the era of EEPROMs and flash memory, use an on-chip EPROM to store their program. Such microcontrollers include some versions of the Intel 8048, the Freescale 68HC11, and the "C" versions of the PIC microcontroller. Like EPROM chips, such microcontrollers came in windowed (expensive) versions that were used for debugging and program development. The same chip came in (somewhat cheaper) opaque OTP packages for production. Leaving the die of such a chip exposed to light can also change behavior in unexpected ways when moving from a windowed part used for development to a non-windowed part for production.

    EPROM generations, sizes and types[edit]

    The first generation 1702 devices were fabricated with the p-MOS technology. They were powered with VCC = VBB = +5 V and VDD = VGG = -9 V in Read mode, and with VDD = VGG = -47 V in Programming mode.[13][14]

    The second generation 2704/2708 devices switched to n-MOS technology and to three-rail VCC = +5 V, VBB = -5 V, VDD = +12 V power supply with VPP = 12 V and a +25 V pulse in Programming mode.

    The n-MOS technology evolution introduced single-rail VCC = +5 V power supply and single VPP = +25 V[15] programming voltage without pulse in the third generation. The unneeded VBB and VDD pins were reused for additional address bits allowing larger capacities (2716/2732) in the same 24-pin package, and even larger capacities with larger packages. Later the decreased cost of the CMOS technology allowed the same devices to be fabricated using it, adding the letter "C" to the device numbers (27xx(x) are n-MOS and 27Cxx(x) are CMOS).

    While parts of the same size from different manufacturers are compatible in read mode, different manufacturers added different and sometimes multiple programming modes leading to subtle differences in the programming process. This prompted larger capacity devices to introduce a "signature mode", allowing the manufacturer and device to be identified by the EPROM programmer. It was implemented by forcing +12 V on pin A9 and reading out two bytes of data. However, as this was not universal, programmer software also would allow manual setting of the manufacturer and device type of the chip to ensure proper programming.[16]

    EPROM Type

    Year

    Size — bits

    Size — bytes

    Length (hex)

    Last address (hex)

    Technology

    1702, 1702A

    1971

    2Kbit

    256

    100

    FF

    PMOS

    2704

    1975

    4 Kbit

    512

    200

    1FF

    NMOS

    2708

    1975

    8 Kbit

    1KB

    400

    3FF

    NMOS

    2716, 27C16, TMS2716, 2516

    1977

    16 Kbit

    2 KB

    800

    7FF

    NMOS/CMOS

    2732, 27C32, 2532

    1979

    32 Kbit

    4 KB

    1000

    FFF

    NMOS/CMOS

    2764, 27C64, 2564

    64 Kbit

    8 KB

    2000

    1FFF

    NMOS/CMOS

    27128, 27C128

    128 Kbit

    16 KB

    4000

    3FFF

    NMOS/CMOS

    27256, 27C256

    256 Kbit

    32 KB

    8000

    7FFF

    NMOS/CMOS

    27512, 27C512

    512 Kbit

    64 KB

    10000

    FFFF

    NMOS/CMOS

    27C010, 27C100

    1Mbit

    128 KB

    20000

    1FFFF

    CMOS

    27C020

    2 Mbit

    256 KB

    40000

    3FFFF

    CMOS

    27C040, 27C400, 27C4001

    4 Mbit

    512 KB

    80000

    7FFFF

    CMOS

    27C080

    8 Mbit

    1MB

    100000

    FFFFF

    CMOS

    27C160

    16 Mbit

    2 MB

    200000

    1FFFFF

    CMOS

    27C320, 27C322

    32 Mbit

    4 MB

    400000

    3FFFFF

    CMOS

    EEPROM 8kbit
    K573RF1
    EPROM 8kbit - detail of 4 bits

    Gallery[edit]

    See also[edit]

    Notes[edit]

    1. ^ 500 J/kg

    References[edit]

    1. ^ Texas Instruments (1997), TMS27C040 524,288 BY 8-BIT UV ERASABLE TMS27PC040 524,288 BY 8-BIT PROGRAMMABLE READ-ONLY MEMORY
  • ^ "CPU History - EPROMs". www.cpushack.com. Retrieved 2021-05-12.
  • ^ a b c d "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019.
  • ^ "People". The Silicon Engine. Computer History Museum. Retrieved 17 August 2019.
  • ^ Sah 1991, p. 639.
  • ^ Oklobdzija, Vojin G. (2008). Digital Design and Fabrication. CRC Press. pp. 5–17. ISBN 978-0-8493-8602-2.
  • ^ Ayers, John E (2004), Digital integrated circuits: analysis and design, CRC Press, p. 591, ISBN 0-8493-1951-X.
  • ^ Horowitz, Paul; Hill, Winfield (1989), The Art of Electronics (2nd ed.), Cambridge: Cambridge University Press, p. 817, ISBN 0-521-37095-7.
  • ^ "M27C512 Datasheet" (PDF). Archived (PDF) from the original on 2018-09-06. Retrieved 2018-10-07.
  • ^ Frohman, Dov (May 10, 1971), Electronics Magazine (article).
  • ^ Margolin, J (May 8, 2009). "EPROM"..
  • ^ Sah 1991, p. 640.
  • ^ "Intel 1702A 2K (256 x 8) UV Erasable PROM" (PDF).
  • ^ "AMD Am1702A 256-Word by 8-Bit Programmable Read Only Memory" (PDF). Archived from the original (PDF) on 2018-01-19. Retrieved 2018-01-19.
  • ^ "16K (2K x 8) UV ERASABLE PROM" (PDF). amigan.yatho.com. Intel. Archived from the original (PDF) on 13 September 2020. Retrieved 18 April 2020.
  • ^ U.S. International Trade Commission, ed. (October 1998). Certain EPROM, EEPROM, Flash Memory and Flash Microcontroller Semiconductor Devices and Products Containing Same, Inv. 337-TA-395. Diane Publishing. pp. 51–72. ISBN 1-4289-5721-9. The details of SEEQ's Silicon Signature method of a device programmer reading an EPROM's ID.
  • Bibliography[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=EPROM&oldid=1233308561"

    Categories: 
    Non-volatile memory
    Integrated circuits
    Computer memory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Commons category link from Wikidata
    Webarchive template wayback links
     



    This page was last edited on 8 July 2024, at 11:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki