Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Purposes  



1.1  System earthing  





1.2  Equipment earthing  





1.3  Functional earthing  







2 Low-voltage systems  



2.1  IEC terminology  



2.1.1  Types of TN networks  





2.1.2  TT network  





2.1.3  IT network  







2.2  Comparison  





2.3  Other terminologies  





2.4  Resistance-earthed neutral (India)  





2.5  Earth leakage protection  





2.6  Earth connectivity check  





2.7  Properties  



2.7.1  Cost  





2.7.2  Safety  





2.7.3  Electromagnetic compatibility  







2.8  Regulations  





2.9  Application examples  







3 High-voltage systems  



3.1  Solid-earthed neutral  





3.2  Resistance-earthed neutral  



3.2.1  Low-resistance earthing  





3.2.2  High-resistance earthing  







3.3  Unearthed neutral  







4 Grounding rods  





5 Grounding connectors  





6 Soil resistance  





7 See also  





8 References  














Earthing system






العربية
Català
Čeština
Deutsch
Eesti
Español
فارسی
Français
ि
Italiano
Nederlands
Norsk bokmål
Polski

Slovenčina
Српски / srpski
Suomi
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Earthing systems)

Anearthing system (UK and IEC) or grounding system (US) connects specific parts of an electric power system with the ground, typically the equipments conductive surface, for safety and functional purposes.[1] The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary among countries, though most follow the recommendations of the International Electrotechnical Commission (IEC). Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.

In addition to electric power systems, other systems may require grounding for safety or function. Tall structures may have lightning rods as part of a system to protect them from lightning strikes. Telegraph lines may use the Earth as one conductor of a circuit, saving the cost of installation of a return wire over a long circuit. Radio antennas may require particular grounding for operation, as well as to control static electricity and provide lightning protection.

Purposes[edit]

There are three main purposes for earthing:

System earthing[edit]

System earthing serves a purpose of electrical safety throughout the system that is not caused by an electrical fault. Its main purpose is to prevent static buildup and to protect against power surges caused by nearby lightning strikes or switching.[2] Static buildup, as induced by friction for example, such as when wind blows onto a radio mast, is dissipated to the Earth.[3] In the event of a surge, a lightning arrester, a surge arrester or a SPD will divert the excess current to the Earth before it reaches an appliance.[4]

System earthing also allows for equipotential bonding to all metal works to prevent potential differences between them.[5] Having Earth as a common reference point also keeps the electrical system's potential difference limited to the supply voltage.[6]

Equipment earthing[edit]

Equipment earthing serves a purpose of electrical safety in an electrical fault. Its main purpose is to prevent equipment damage and the risk of an electric shock. This type of earthing is not an earth connection, technically speaking.[7] When current flows from a line conductor to an earth wire, as is the case when a line conductor makes contact with an earthed surface in a Class I appliance, an automatic disconnection of supply (ADS) device such as a circuit breaker or a RCD will automatically open the circuit to clear the fault.[8]

Functional earthing[edit]

Functional earthing serves a purpose other than electrical safety.[9] Example purposes include electromagnetic interference (EMI) filtering in an EMI filter, and the use of the Earth as a return path in a single-wire earth return distribution system.

Low-voltage systems[edit]

Inlow-voltage networks, which distribute the electric power to the widest class of end users, the main concern for design of earthing systems is safety of consumers who use the electric appliances and their protection against electric shocks. The earthing system, in combination with protective devices such as fuses and residual current devices, must ultimately ensure that a person does not come into contact with a metallic object whose potential relative to the person's potential exceeds a safe threshold, typically set at about 50 V.

In most developed countries, 220 V, 230 V, or 240 V sockets with earthed contacts were introduced either just before or soon after World War II, though with considerable national variation. However in the United States and Canada, where the supply voltage is only 120 V power outlets installed before the mid-1960s generally did not include a ground (earth) pin. In the developing world, local wiring practice may or may not provide a connection to an earth.

On low voltage electricity networks with a phase to neutral voltage exceeding 240 V to 690 V, which are mostly used in industry, mining equipment and machines rather than publicly accessible networks, the earthing system design is equally important from safety point of view as for domestic users.

From 1947 to 1996 for ranges (including separate cook tops and ovens) and 1953 to 1996 for clothes dryers, US National Electrical Code allowed the supply neutral wire to be used as the equipment enclosure connection to ground if the circuit originated in the main service panel. This was permitted for plug-in equipment and permanently connected equipment. Normal imbalances in the circuit would create small equipment to ground voltages, a failure of the neutral conductor or connections would allow the equipment to go to full 120 volts to ground, an easily lethal situation. The 1996 and newer editions of the NEC no longer permit this practice. For similar reasons, most countries have now mandated dedicated protective earth connections in consumer wiring that are now almost universal. In the distribution networks, where connections are fewer and less vulnerable, many countries allow the earth and neutral to share a conductor.

If the fault path between accidentally energized objects and the supply connection has low impedance, the fault current will be so large that the circuit over-current protection device (fuse or circuit breaker) will open to clear the ground fault. Where the earthing system does not provide a low-impedance metallic conductor between equipment enclosures and supply return (such as in a TT separately earthed system), fault currents are smaller, and will not necessarily operate the over-current protection device. In such case a residual-current device is installed to detect the current leaking to ground and interrupt the circuit.

IEC terminology[edit]

International standard IEC 60364 distinguishes three families of earthing arrangements, using the two-letter codes TN, TT, and IT.

The first letter indicates the connection between earth and the power-supply equipment (generator or transformer):

"T" — Direct connection of a point with earth (Latin: terra)
"I" — No point is connected with earth (Latin: īnsulātum), except perhaps via a high impedance.

The second letter indicates the connection between earth or network and the electrical device being supplied:

"T" — Earth connection is by a local direct connection to earth (Latin: terra), usually via a ground rod.
"N" — the earth connection is supplied by the electricity supply network, either separately to the neutral conductor (TN-S), combined with the neutral conductor (TN-C), or both (TN-C-S). These are discussed below.

Types of TN networks[edit]

TN-S: separate protective earth (PE) and neutral (N) conductors from transformer to consuming device, which are not connected together at any point after the building distribution point.
TN-C: combined PE and N conductor all the way from the transformer to the consuming device.
TN-C-S: combined PEN conductor from transformer to building distribution point, but separate PE and N conductors in fixed indoor wiring and flexible power cords.

In a TN earthing system, one of the points in the generatorortransformer is connected with earth, usually the star point in a three-phase system. The body of the electrical device is connected with earth via this earth connection at the transformer. This arrangement is a current standard for residential and industrial electric systems particularly in Europe.[10]

The conductor that connects the exposed metallic parts of the consumer's electrical installation is called protective earth (PE; see also: Ground). The conductor that connects to the star point in a three-phase system, or that carries the return current in a single-phase system, is called neutral (N). Three variants of TN systems are distinguished:

TN−S
PE and N are separate conductors that are connected together only near the power source.
TN−C
A combined PEN conductor fulfills the functions of both a PE and an N conductor. (on 230/400 V systems normally only used for distribution networks)
TN−C−S
Part of the system uses a combined PEN conductor, which is at some point split up into separate PE and N lines. The combined PEN conductor typically occurs between the substation and the entry point into the building, and earth and neutral are separated in the service head. In the UK, this system is also known as protective multiple earthing (PME), because of the practice of connecting the combined neutral-and-earth conductor via the shortest practicable route to local earth rods at the source and at intervals along the distribution networks to each premises, to provide both system earthing and equipment earthing at each of these locations.[11][12] Similar systems in Australia and New Zealand are designated as multiple earthed neutral (MEN) and, in North America, as multi-grounded neutral (MGN).

It is possible to have both TN-S and TN-C-S supplies taken from the same transformer. For example, the sheaths on some underground cables corrode and stop providing good earth connections, and so homes where high resistance "bad earths" are found may be converted to TN-C-S. This is only possible on a network when the neutral is suitably robust against failure, and conversion is not always possible. The PEN must be suitably reinforced against failure, as an open circuit PEN can impress full phase voltage on any exposed metal connected to the system earth downstream of the break. The alternative is to provide a local earth and convert to TT. The main attraction of a TN network is the low impedance earth path allows easy automatic disconnection (ADS) on a high current circuit in the case of a line-to-PE fault as the same breaker or fuse will operate for either L-N or L-PE faults, and an RCD is not needed to detect earth faults.

TT network[edit]

The TT (French: terre-terre) earthing system

In a TT (Latin: terra-terra) earthing system, the protective earth connection for the consumer is provided by a local earth electrode, (sometimes referred to as the Terra-Firma connection) and there is another independently installed at the generator. There is no 'earth wire' between the two. The fault loop impedance is higher, and unless the electrode impedance is very low indeed, a TT installation should always have an RCD (GFCI) as its first isolator.

The big advantage of the TT earthing system is the reduced conducted interference from other users' connected equipment. TT has always been preferable for special applications like telecommunication sites that benefit from the interference-free earthing. Also, TT networks do not pose any serious risks in the case of a broken neutral. In addition, in locations where power is distributed overhead, earth conductors are not at risk of becoming live should any overhead distribution conductor be fractured by, say, a fallen tree or branch.

In pre-RCD era, the TT earthing system was unattractive for general use because of the difficulty of arranging reliable automatic disconnection (ADS) in the case of a line-to-PE fault (in comparison with TN systems, where the same breaker or fuse will operate for either L-N or L-PE faults). But as residual current devices mitigate this disadvantage, the TT earthing system has become much more attractive providing that all AC power circuits are RCD-protected. In some countries (such as the UK) TT is recommended for situations where a low impedance equipotential zone is impractical to maintain by bonding, where there is significant outdoor wiring, such as supplies to mobile homes and some agricultural settings, or where a high fault current could pose other dangers, such as at fuel depots or marinas.

The TT earthing system is used throughout Japan, with RCD units in most industrial settings or even at home. This can impose added requirements on variable frequency drives and switched-mode power supplies which often have substantial filters passing high frequency noise to the ground conductor.

IT network[edit]

The IT (French: isolé-terre) earthing system

In an IT network (isolé-terre), the electrical distribution system has no connection to earth at all, or it has only a very high-impedance connection.

Comparison[edit]

TT IT TN-S TN-C TN-C-S
Earth fault loop impedance High Highest Low Low Low
RCD preferred? Yes Yes Optional No Optional
Need earth electrode at site? Yes Yes No No Optional
PE conductor cost Low Low Highest Least High
Risk of broken PEN-conductor No No High Highest High
Safety Safe Less Safe Safest Least Safe Safe
Electromagnetic interference Least Least Low High Low
Safety risks High loop impedance (step voltages) Double fault, overvoltage Broken PE Broken PEN Broken PEN
Advantages Safe and reliable Continuity of operation, cost Safest Cost Safety and cost

Other terminologies[edit]

While the national wiring regulations for buildings of many countries follow the IEC 60364 terminology, in North America (United States and Canada), the term "equipment grounding conductor" refers to equipment grounds and ground wires on branch circuits, and "grounding electrode conductor" is used for conductors bonding an Earth/Ground rod, electrode or similar to a service panel. The "local" Earth/Ground electrode provides "system grounding"[13] at each building where it is installed.

The "Grounded" current carrying conductor is the system "neutral". Australian and New Zealand standards use a modified protective multiple earthing (PME [14]) system called multiple earthed neutral (MEN). The neutral is grounded (earthed) at each consumer service point thereby effectively bringing the neutral potential difference towards zero along the whole length of LV lines. In the IEC 60364 terminology this is called TN-C-S. In North America, the term "multigrounded neutral" system (MGN) is used.[15]

In the UK and some Commonwealth countries, the term "PNE", meaning phase-neutral-earth is used to indicate that three (or more for non-single-phase connections) conductors are used, i.e., PN-S.

Resistance-earthed neutral (India)[edit]

A resistance earth system is used for mining in India as per Central Electricity Authority Regulations. Instead of a solid connection of neutral to earth, a neutral grounding resistor (NGR) is used to limit the current to ground to less than 750 mA. Due to the fault current restriction it is safer for gassy mines.[16] Since the earth leakage is restricted, leakage protection devices can be set to less than 750 mA. By comparison, in a solidly earthed system, earth fault current can be as much as the available short-circuit current.

The neutral earthing resistor is monitored to detect an interrupted ground connection and to shut off power if a fault is detected.[17]

Earth leakage protection[edit]

To avoid accidental shock, current sensing circuits are used at the source to isolate the power when leakage current exceeds a certain limit. Residual-current devices (RCDs, RCCBs or GFCIs) are used for this purpose. Previously, an earth leakage circuit breaker is used. In industrial applications, earth leakage relays are used with separate core balanced current transformers.[18] This protection works in the range of milli-Amps and can be set from 30 mA to 3000 mA.

Earth connectivity check[edit]

A separate pilot wire is run from distribution/ equipment supply system in addition to earth wire, to supervise the continuity of the wire. This is used in the trailing cables of mining machinery.[19] If the earth wire is broken, the pilot wire allows a sensing device at the source end to interrupt power to the machine. This type of circuit is a must for portable heavy electric equipment (like LHD (Load, Haul, Dump machine)) being used in underground mines.

Properties[edit]

Cost[edit]

Safety[edit]

Electromagnetic compatibility[edit]

Regulations[edit]

Application examples[edit]

High-voltage systems[edit]

Simulation of multiple grounding in one layer soil

In high-voltage networks (above 1 kV), which are far less accessible to the general public, the focus of earthing system design is less on safety and more on reliability of supply, reliability of protection, and impact on the equipment in presence of a short circuit. Only the magnitude of phase-to-ground short circuits, which are the most common, is significantly affected with the choice of earthing system, as the current path is mostly closed through the earth. Three-phase HV/MV power transformers, located in distribution substations, are the most common source of supply for distribution networks, and type of grounding of their neutral determines the earthing system.

There are five types of neutral earthing:[26]

Solid-earthed neutral[edit]

Insolidordirectly earthed neutral, transformer's star point is directly connected to the ground. In this solution, a low-impedance path is provided for the ground fault current to close and, as result, their magnitudes are comparable with three-phase fault currents.[26] Since the neutral remains at the potential close to the ground, voltages in unaffected phases remain at levels similar to the pre-fault ones; for that reason, this system is regularly used in high-voltage transmission networks, where insulation costs are high.[27]

Resistance-earthed neutral[edit]

To limit short circuit earth fault an additional neutral earthing resistor (NER) is added between the neutral of transformer's star point and earth.

Low-resistance earthing[edit]

With low resistance fault current limit is relatively high. In India it is restricted for 50 A for open cast mines according to Central Electricity Authority Regulations, CEAR, 2010, rule 100.

High-resistance earthing[edit]

High resistance grounding system grounds the neutral through a resistance which limits the ground fault current to a value equal to or slightly greater than the capacitive charging current of that system.

Unearthed neutral[edit]

Inunearthed, isolatedorfloating neutral system, as in the IT system, there is no direct connection of the star point (or any other point in the network) and the ground. As a result, ground fault currents have no path to be closed and thus have negligible magnitudes. However, in practice, the fault current will not be equal to zero: conductors in the circuit — particularly underground cables — have an inherent capacitance towards the earth, which provides a path of relatively high impedance.[28]

Systems with isolated neutral may continue operation and provide uninterrupted supply even in presence of a ground fault.[26] However, while the fault is present, the potential of other two phases relative to the ground reaches of the normal operating voltage, creating additional stress for the insulation; insulation failures may inflict additional ground faults in the system, now with much higher currents.[27]

Presence of uninterrupted ground fault may pose a significant safety risk: if the current exceeds 4 A – 5 A an electric arc develops, which may be sustained even after the fault is cleared.[28] For that reason, they are chiefly limited to underground and submarine networks, and industrial applications, where the reliability need is high and probability of human contact relatively low. In urban distribution networks with multiple underground feeders, the capacitive current may reach several tens of amperes, posing significant risk for the equipment.

The benefit of low fault current and continued system operation thereafter is offset by inherent drawback that the fault location is hard to detect.[29]

Grounding rods[edit]

According to the IEEE standards, grounding rods are made from material such as copper and steel. For choosing a grounding rod there are several selection criteria such as: corrosion resistance, diameter depending on the fault current, conductivity and others.[30] There are several types derived from copper and steel: copper-bonded, stainless-steel, solid copper, galvanized steel ground. In recent decades, there has been developed chemical grounding rods for low impedance ground containing natural electrolytic salts.[31] and Nano-Carbon Fiber Grounding rods.[32]

Grounding connectors[edit]

Grounding connectors

Connectors for earthing installation are a means of communication between the various components of the earthing and lightning protection installations (earthing rods, earthing conductors, current leads, busbars, etc.).

For high voltage installations, exothermic welding is used for underground connections.

Soil resistance[edit]

Vertical stress of a soil

Soil resistance is a major aspect in the design and calculation of an earthing system/grounding installation. Its resistance determines the efficiency of the diversion of unwanted currents to zero potential (ground). The resistance of a geological material depends on several components: the presence of metal ores, the temperature of the geological layer, the presence of archeological or structural features, the presence of dissolved salts, and contaminants, porosity and permeability. There are several basic methods for measuring soil resistance. The measurement is performed with two, three or four electrodes. The measurement methods are: pole-pole, dipole-dipole, pole-dipole, Wenner method, and the Schlumberger method.

See also[edit]

References[edit]

  1. ^ "Why is an Earthing System Important?". Manav Energy. 2020-07-15. Retrieved 2020-10-20.
  • ^ "The impact of lightning and its effects". Retrieved 25 June 2022.
  • ^ "The Basics of Grounding Electrical Systems - Technical Articles". eepower.com. Retrieved 7 July 2022.
  • ^ "Surge". Sunpower UK. Retrieved 25 June 2022.
  • ^ "Earthing connections". Retrieved 25 June 2022.
  • ^ The Electronics Handbook|Jerry C. Whitaker | 2018| page 2340: High-resistance grounding will limit ground fault current to a few amperes, thus removing the potential for arcing damage... Its function is to keep the entire grounding system at earth potential.
  • ^ Biesterveld, Jim. "Grounding And Bonding National Electric Code Article 250" (PDF). Archived from the original (PDF) on 2020-07-06. Retrieved 2020-07-05.
  • ^ Czapp, Stanislaw (January 2020). "Testing Sensitivity of A-Type Residual Current Devices to Earth Fault Currents with Harmonics". Sensors. 20 (7): 2044. Bibcode:2020Senso..20.2044C. doi:10.3390/s20072044. ISSN 1424-8220. PMC 7181260. PMID 32260579.
  • ^ BS7671:2008. Part 2 – definitions.
  • ^ Cahier Technique Merlin Gerin n° 173 / p.9|http://www.schneider-electric.com/en/download/document/ECT173/
  • ^ https://www.scribd.com/doc/31741300/Industrial-Power-Systems-Handbook-Donald-Beeman Chapter 5.
  • ^ MikeHoltNEC (14 November 2013). "Grounding - Safety Fundamentals (1hr:13min:19sec)". Archived from the original on 2021-12-21 – via YouTube.
  • ^ "Mike Holt Enterprises - the leader in electrical training".
  • ^ "The principles of Protective Multiple Earthing (PME)". medium.com. November 23, 2018. Retrieved 30 December 2021.
  • ^ "Grounding of Distribution Systems".
  • ^ [1] Archived 2016-09-15 at the Wayback Machine; Central Electricity Authority-(Measures relating to Safety and Electric Supply). Regulations, 2010; earthing system, rule 99 and protective devices, rule 100.
  • ^ [2][permanent dead link], The Importance of the Neutral-Grounding Resistor
  • ^ [3]; Electrical Notes, Volume 1, By Sir Arthur Schuster, p.317
  • ^ Laughton, M A; Say, M G (2013). Electrical Engineer's Reference Book. Elsevier. p. 32. ISBN 9781483102634.
  • ^ Gates, B.G. (1936). Neutral inversion in power systems. In Journal of the Institution of Electrical Engineers 78 (471): 317–325. Retrieved 2012-03-20.
  • ^ [4] Archived 2016-09-15 at the Wayback Machine; Central Electricity Authority-(Measures relating to Safety and Electric Supply). Regulations, 2010; rule 41 and 42
  • ^ Trevor Linsley (2011). Basic Electrical Installation Work. Routledge. p. 152. ISBN 978-1-136-42748-0.
  • ^ "Indian Standard 3043 Code of practice for electrical wiring installations" (PDF). Bureau of Indian Standards. Retrieved 30 March 2018.
  • ^ "El-trøbbel i norske hjem". bygg.no. 31 October 2016.
  • ^ "Nettkundenes nytte av en oppgradering av lavspenningsnettet" (PDF). NVE. Retrieved 1 November 2021.
  • ^ a b c Parmar, Jignesh (6 February 2012), Types of neutral earthing in power distribution (part 1), EEP – Electrical Engineering Portal
  • ^ a b Guldbrand, Anna (2006), System earthing (PDF), Industrial Electrical Engineering and Automation, Lund University
  • ^ a b Bandyopadhyay, M. N. (2006). "21. Neutral earthing". Electrical Power Systems: Theory and Practice. PHI Learning Pvt. Ltd. pp. 488–491. ISBN 9788120327832.
  • ^ Fischer, Normann; Hou, Daqing (2006), Methods for detecting ground faults in medium-voltage distribution power systems, Schweitzer Engineering Laboratories, Inc., p. 15
  • ^ ENRICO The Pros and Cons of 4 Common Ground Rod Materials nvent.com/
  • ^ Chemical Ground Electrode erico.com/[permanent dead link]
  • ^ Jianli Zhao; Xiaoyan Zhang; Bo Chen; Zhihui Zheng; Yejun Liu; Zhuohong Evaluation Method of Nano-Carbon Fiber Grounding Grid
  • General

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Earthing_system&oldid=1231470408"

    Categories: 
    Electric power distribution
    Electrical wiring
    Electrical safety
    IEC 60364
    Hidden categories: 
    Webarchive template wayback links
    All articles with dead external links
    Articles with dead external links from February 2024
    Articles with permanently dead external links
    Articles with dead external links from May 2024
    Articles with short description
    Short description is different from Wikidata
    Use British English from December 2023
    Articles needing additional references from April 2024
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from September 2015
    Articles to be expanded from October 2013
    All articles to be expanded
    Articles using small message boxes
     



    This page was last edited on 28 June 2024, at 13:14 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki