Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 No extension to singular cardinals  





3 See also  





4 References  














Easton's theorem






Deutsch
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inset theory, Easton's theorem is a result on the possible cardinal numbersofpowersets. Easton (1970) (extending a result of Robert M. Solovay) showed via forcing that the only constraints on permissible values for 2κ when κ is a regular cardinal are

(where cf(α) is the cofinality of α) and

Statement[edit]

IfG is a class function whose domain consists of ordinals and whose range consists of ordinals such that

  1. G is non-decreasing,
  2. the cofinalityof is greater than for each α in the domain of G, and
  3. is regular for each α in the domain of G,

then there is a model of ZFC such that

for each in the domain of G.

The proof of Easton's theorem uses forcing with a proper class of forcing conditions over a model satisfying the generalized continuum hypothesis.

The first two conditions in the theorem are necessary. Condition 1 is a well known property of cardinality, while condition 2 follows from König's theorem.

In Easton's model the powersets of singular cardinals have the smallest possible cardinality compatible with the conditions that 2κ has cofinality greater than κ and is a non-decreasing function of κ.

No extension to singular cardinals[edit]

Silver (1975) proved that a singular cardinal of uncountable cofinality cannot be the smallest cardinal for which the generalized continuum hypothesis fails. This shows that Easton's theorem cannot be extended to the class of all cardinals. The program of PCF theory gives results on the possible values of for singular cardinals . PCF theory shows that the values of the continuum function on singular cardinals are strongly influenced by the values on smaller cardinals, whereas Easton's theorem shows that the values of the continuum function on regular cardinals are only weakly influenced by the values on smaller cardinals.

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Easton%27s_theorem&oldid=1171004308"

Categories: 
Set theory
Theorems in the foundations of mathematics
Cardinal numbers
Forcing (mathematics)
Independence results
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 18 August 2023, at 12:55 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki