Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Deployment  





2 Specifications  





3 See also  





4 References  





5 External links  














EcoSCOPE






Deutsch
Nederlands
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Video (50%, looping, each image shifted to compensate the rolling microturbulences from the waves) of feeding juvenile herring (38 mm) on copepods - the fish approach from below and catch each copepod individually. In the middle of the image a copepod escapes successfully to the left.

The ecoSCOPE is an optical sensor system, deployed from a small remotely operated vehicle (ROV) or fibre optic cable, to investigate behavior and microdistribution of small organisms in the ocean.

Deployment[edit]

Although an ROV may be very small and quiet, it is impossible to approach feeding herring closer than 40 cm. The ecoSCOPE allows observation of feeding herring from a distance of only 4 cm. From 40 cm, the herrings' prey (copepods) in front of the herring are invisible due to the deflection of light by phytoplankton and microparticles in highly productive waters where herring live. With the ecoSCOPE, the predators are illuminated by natural light, the prey by a light sheet, projected via a second endoscope from strobed LEDs (2 ms, 100% relative intensity at 700 nm, 53% at 690 nm, 22% at 680 nm, 4% at 660 nm, 0% at 642 nm).

By imitating the long, thin snout of the garfish protruding into the security sphere of the alert herrings, an endoscope with a tip diameter of 11 mm is used. The endoscope is camouflaged to reduce the brightness-contrast against the background: the top is black and the sides are silvery. Additionally, the front of the ROV is covered by a mirror, reflecting a light gradient resembling the natural scene and making the instrument body virtually invisible to the animals. A second sensor images other copepods, phytoplankton and particles at very high magnification. Another advantage of these small "optical probes" is the minimal disruption of the current-field in the measuring volume, allowing for less disturbed surveys of microturbulence and shear.

Another video can be seen in the article for Atlantic herring.

An ecoSCOPE was also deployed to measure the dynamics of particles in a polluted estuary: see image on Particle (ecology), another as an underwater environmental monitoring system, utilizing the orientation capacity of juvenile glasseel.

Specifications[edit]

The ecoSCOPE is a product of the new initiative of "Ocean Online Biosensors": a synthesis of IT-sensoric and the sensing capability of ocean organisms.

The twelve exits on the sides and the entrance in the middle, in front of a CD for comparison

Depicted in the image on the right is the central unit. On all four corners are small entrances, through which water from different sources enters (in this case, rivers and creeks in New Jersey). It flows through a small labyrinth and mixes in the central chamber. It exits through a small tube in the middle. The glasseels migrate through this small tube heading into the current. In the middle is the entrance for the eels. They test the different water qualities and migrate toward the corner, where they exit.

Detail of the mixing chamber - Closeup on the migrating glasseels. Visible through the transparent skin are the gills and the heart

It is the opinion of many scientists that eels have developed the finest nose on the planet. They can sense concentrations of one part in 19 trillion. This is the same concentration as one glass of alcohol in the waters of all America's Great Lakes. For the eels the sensory impressions are probably as diverse as the colors visible for us.

The system is submerged, and a digital camera observes the exits. The dynIMAGE software monitors the frequency of decisions per exit. Many thousand of glasseels pass through the system on a single day. The three exits in the left lower corner carry water from polluted sources (one is a drinking water reservoir).

EcoSCOPE systems have already been tracking water pollution and its effect on fish and plankton behavior in Europe and the United States). For the future it is anticipated to deploy ecoSCOPEs continuously online, within the project LEO Projekt off New York City, visible for the public. Tests have also been performed with different qualities of drinking water and with solutions of runoff juice from different samples of fish.

See also[edit]

References[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=EcoSCOPE&oldid=1202536892"

Categories: 
Optical devices
Marine biology
Fisheries science
Hidden categories: 
Articles that may contain original research from December 2009
All articles that may contain original research
Wikipedia articles with style issues from December 2009
All articles with style issues
Webarchive template wayback links
All articles with dead external links
Articles with dead external links from December 2017
Articles with permanently dead external links
 



This page was last edited on 3 February 2024, at 00:14 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki