Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In undifferentiated cortical glomeruli  





2 In juxtamedullary glomeruli  





3 Regulation of glomerular filtration rate  





4 See also  





5 Additional images  





6 External links  














Efferent arteriole






العربية
Български
Bosanski
Català
Español
Euskara
فارسی
Français
Italiano

Português
Српски / srpski
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Efferent arteriole
Scheme of renal tubule and its vascular supply. (Label "Efferent vessel" is visible in upper left.)
Distribution of blood vessels in cortex of kidney.
Details
Sourceglomerular capillaries
Identifiers
Latinarteriola glomerularis efferens capsulae renalis
TA98A08.1.03.006
FMA272214 77043, 272214
Anatomical terminology

[edit on Wikidata]

The efferent arterioles are blood vessels that are part of the urinary tractoforganisms. Efferent (from Latin ex + ferre) means "outgoing", in this case meaning carrying blood out away from the glomerulus. The efferent arterioles form a convergence of the capillaries of the glomerulus, and carry blood away from the glomerulus that has already been filtered. They play an important role in maintaining the glomerular filtration rate despite fluctuations in blood pressure.

In the mammalian kidney, they follow two markedly different courses, depending on the location of the glomeruli from which they arise.

In the mammalian kidney, about 15% of glomeruli lie close to the boundary between the renal cortex and renal medulla and are known as juxtamedullary glomeruli. The rest are simply undifferentiated cortical glomeruli.

In undifferentiated cortical glomeruli[edit]

The efferent arterioles of the undifferentiated cortical glomeruli are the most complex. Promptly on leaving the glomerulus they break up into capillaries and become part of a rich plexus of vessels surrounding the cortical portions of the renal tubules.

In juxtamedullary glomeruli[edit]

The efferent arterioles of the juxtamedullary glomeruli are much different. They do break up, but they form bundles of vessels (arteriolae recti) that cross the outer zone of the medulla to perfuse the inner zone.

Vessels returning from the inner medulla (venulae recti) intersperse themselves in a highly regular fashion among the descending arteriolae recti to form a well-organized rete mirabile.

This rete is responsible for the osmotic isolation of the inner medulla from the rest of the kidney and so permits the excretion of a hypertonic urine when circumstances require. Since the rete also isolates the inner medulla from gaseous exchange, any metabolism in this area is anaerobic, and red cells, which would serve no purpose there, are ordinarily shunted from the arteriolae recti by an unknown mechanism into the capillary plexus surrounding the tubules of the outer zone of the medulla.

Blood in this plexus and returning from the inner medulla finds its way to the renal vein and the general circulation by pathways similar to those providing drainage for the rest of the cortex.

Regulation of glomerular filtration rate[edit]

When angiotensin II levels are increased due to activation of the renin–angiotensin–aldosterone system, most of the arteries in the body experience vasoconstriction, in order to maintain adequate blood pressure. However, this reduces blood flow to the kidneys. To compensate, the efferent arterioles constrict to a greater degree than the other arteries, in response to increased levels of angiotensin II. Pressure in glomerular capillaries is therefore maintained and glomerular filtration rate remains adequate. However, in a state of very high angiotensin II for a prolonged period of time, the colloid oncotic pressure of the capillaries will increase, counteracting the increased hydrostatic pressure from the efferent constriction. This will decrease the glomerular filtration rate, depending on the level of oncotic increase in the capillaries, resulting in a decreased filtration fraction.

See also[edit]

Additional images[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Efferent_arteriole&oldid=1192851131"

Category: 
Kidney anatomy
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles with TA98 identifiers
 



This page was last edited on 31 December 2023, at 17:59 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki