Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Solution in the zero-field case  



2.1  Commuting transfer matrices  





2.2  The matrix function '"`UNIQ--postMath-00000023-QINU`"'  





2.3  Explicit solution  







3 Equivalence with an Ising model  





4 See also  





5 Notes  





6 References  














Eight-vertex model







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Instatistical mechanics, the eight-vertex model is a generalisation of the ice-type (six-vertex) models; it was discussed by Sutherland,[1] and Fan & Wu,[2] and solved by Baxter in the zero-field case.[3]

Description[edit]

As with the ice-type models, the eight-vertex model is a square lattice model, where each state is a configuration of arrows at a vertex. The allowed vertices have an even number of arrows pointing towards the vertex; these include the six inherited from the ice-type model (1-6), and sinks and sources (7, 8).

Eightvertex2

We consider a lattice, with vertices and edges. Imposing periodic boundary conditions requires that the states 7 and 8 occur equally often, as do states 5 and 6, and thus can be taken to have the same energy. For the zero-field case the same is true for the two other pairs of states. Each vertex has an associated energy and Boltzmann weight , giving the partition function over the lattice as

where the summation is over all allowed configurations of vertices in the lattice. In this general form the partition function remains unsolved.

Solution in the zero-field case[edit]

The zero-field case of the model corresponds physically to the absence of external electric fields. Hence, the model remains unchanged under the reversal of all arrows; the states 1 and 2, and 3 and 4, consequently must occur as pairs. The vertices can be assigned arbitrary weights

The solution is based on the observation that rows in transfer matrices commute, for a certain parametrisation of these four Boltzmann weights. This came about as a modification of an alternate solution for the six-vertex model; it makes use of elliptic theta functions.

Commuting transfer matrices[edit]

The proof relies on the fact that when and , for quantities

the transfer matrices and (associated with the weights , , , and , , , ) commute. Using the star-triangle relation, Baxter reformulated this condition as equivalent to a parametrisation of the weights given as

for fixed modulus and and variable . Here snh is the hyperbolic analogue of sn, given by

and and are Theta functions of modulus . The associated transfer matrix thus is a function of alone; for all ,

The matrix function [edit]

The other crucial part of the solution is the existence of a nonsingular matrix-valued function , such that for all complex the matrices commute with each other and the transfer matrices, and satisfy

(1)

where

The existence and commutation relations of such a function are demonstrated by considering pair propagations through a vertex, and periodicity relations of the theta functions, in a similar way to the six-vertex model.

Explicit solution[edit]

The commutation of matrices in (1) allow them to be diagonalised, and thus eigenvalues can be found. The partition function is calculated from the maximal eigenvalue, resulting in a free energy per site of

for

where and are the complete elliptic integrals of moduli and . The eight vertex model was also solved in quasicrystals.

Equivalence with an Ising model[edit]

There is a natural correspondence between the eight-vertex model, and the Ising model with 2-spin and 4-spin nearest neighbour interactions. The states of this model are spins on faces of a square lattice. The analogue of 'edges' in the eight-vertex model are products of spins on adjacent faces:

Isingduallattice

The most general form of the energy for this model is

where , , , describe the horizontal, vertical and two diagonal 2-spin interactions, and describes the 4-spin interaction between four faces at a vertex; the sum is over the whole lattice.

Isinginteractions

We denote horizontal and vertical spins (arrows on edges) in the eight-vertex model , respectively, and define up and right as positive directions. The restriction on vertex states is that the product of four edges at a vertex is 1; this automatically holds for Ising 'edges'. Each configuration then corresponds to a unique , configuration, whereas each , configuration gives two choices of configurations.

Equating general forms of Boltzmann weights for each vertex , the following relations between the and , , , , define the correspondence between the lattice models:

It follows that in the zero-field case of the eight-vertex model, the horizontal and vertical interactions in the corresponding Ising model vanish.

These relations gives the equivalence between the partition functions of the eight-vertex model, and the 2,4-spin Ising model. Consequently a solution in either model would lead immediately to a solution in the other.

See also[edit]

Notes[edit]

  1. ^ Sutherland, Bill (1970). "Two‐Dimensional Hydrogen Bonded Crystals without the Ice Rule". Journal of Mathematical Physics. 11 (11). AIP Publishing: 3183–3186. Bibcode:1970JMP....11.3183S. doi:10.1063/1.1665111. ISSN 0022-2488.
  • ^ Fan, Chungpeng; Wu, F. Y. (1970-08-01). "General Lattice Model of Phase Transitions". Physical Review B. 2 (3). American Physical Society (APS): 723–733. Bibcode:1970PhRvB...2..723F. doi:10.1103/physrevb.2.723. ISSN 0556-2805.
  • ^ Baxter, R. J. (1971-04-05). "Eight-Vertex Model in Lattice Statistics". Physical Review Letters. 26 (14). American Physical Society (APS): 832–833. Bibcode:1971PhRvL..26..832B. doi:10.1103/physrevlett.26.832. ISSN 0031-9007.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Eight-vertex_model&oldid=1082780576"

    Categories: 
    Exactly solvable models
    Statistical mechanics
    Lattice models
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 15 April 2022, at 02:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki