Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Operating procedure  





3 Applications  





4 See also  





5 References  














Electrical resistivity tomography






Norsk bokmål
Polski
Русский
Українська
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


2D resistivity inversion of ERT data
Deployment of a permanent electrical resistivity tomography profile on a longitudinal section of an active landslide.

Electrical resistivity tomography (ERT) or electrical resistivity imaging (ERI) is a geophysical technique for imaging sub-surface structures from electrical resistivity measurements made at the surface, or by electrodes in one or more boreholes. If the electrodes are suspended in the boreholes, deeper sections can be investigated. It is closely related to the medical imaging technique electrical impedance tomography (EIT), and mathematically is the same inverse problem. In contrast to medical EIT, however, ERT is essentially a direct current method. A related geophysical method, induced polarization (orspectral induced polarization), measures the transient response and aims to determine the subsurface chargeability properties.

Electrical resistivity measurements can be used for identification and quantification of depth of groundwater, detection of clays, and measurement of groundwater conductivity.[1]

History

[edit]

The technique evolved from techniques of electrical prospecting that predate digital computers, where layers or anomalies were sought rather than images. Early work on the mathematical problem in the 1930s assumed a layered medium (see for example Langer, Slichter). Andrey Nikolayevich Tikhonov who is best known for his work on regularization of inverse problems also worked on this problem. He explains in detail how to solve the ERT problem in a simple case of 2-layered medium. During the 1940s, he collaborated with geophysicists and without the aid of computers they discovered large deposits of copper. As a result, they were awarded a State Prize of Soviet Union.

Andrey Nikolayevich Tikhonov, the "father of ERT"

When adequate computers became widely available, the inverse problem of ERT could be solved numerically. The work of Loke and Barker at Birmingham University was among the first such solution and their approach is still widely used.

With the advancement in the field of Electrical Resistivity Tomography (ERT) from 1D to 2D and nowadays 3D, ERT has explored many fields. The applications of ERT include fault investigation, ground water table investigation, soil moisture content determination and many others. In industrial process imaging ERT can be used in a similar fashion to medical EIT, to image the distribution of conductivity in mixing vessels and pipes. In this context it is usually called Electrical Resistance Tomography, emphasising the quantity that is measured rather than imaged.

Operating procedure

[edit]

Soil resistivity, measured in ohm-centimeters (Ω⋅cm), varies with moisture content and temperature changes. In general, an increase in soil moisture results in a reduction in soil resistivity. The pore fluid provides the only electrical path in sands, while both the pore fluid and the surface charged particles provide electrical paths in clays. Resistivities of wet fine-grained soils are generally much lower than those of wet coarse-grained soils. The difference in resistivity between a soil in a dry and in a saturated condition may be several orders of magnitude.[2]

The method of measuring subsurface resistivity involves placing four electrodes in the ground in a line at equal spacing, applying a measured AC current to the outer two electrodes, and measuring the AC voltage between the inner two electrodes. A measured resistance is calculated by dividing the measured voltage by the measured current. This resistance is then multiplied by a geometric factor that includes the spacing between each electrode to determine the apparent resistivity.

Electrode spacings of 0.75, 1.5, 3.0, 6.0, and 12.0 m are typically used for shallow depths (<10 m) of investigations. Greater electrode spacings of 1.5, 3.0, 6.0, 15.0, 30.0, 100.0, and 150.0 m are typically used for deeper investigations. The depth of investigation is typically less than the maximum electrode spacing. Water is introduced to the electrode holes as the electrodes are driven into the ground to improve electrical contact.

ERT survey

Applications

[edit]

ERT is used to create images of various types of subsurface conditions and structures. It has applications in various fields, including:

Environmental Studies:

Geotechnical Engineering:

Archaeology and Cultural Heritage:

Mining and Mineral Exploration:

Hydrogeology:

Engineering and Infrastructure:

Oil and Gas Exploration:

Agriculture:

See also

[edit]

References

[edit]
  1. ^ Budhu, M. (2011) Soil Mechanics and Foundation. 3rd Edition, John Wiley & Sons, Inc., Hoboken. see chapter 3.5.1 Soils Exploration Methods
  • ^ Budhu, M. (2011) Soil Mechanics and Foundation. 3rd Edition, John Wiley & Sons, Inc., Hoboken. see chapter 3.5.1 Soils Exploration Methods
  • ^ Deep Scan Tech (2022): Deep Scan Tech helps landfills protect the environment with a demonstration project in Ukraine.
  • ^ Deep Scan Tech (2022): Deep Scan Tech helps landfills protect the environment with a demonstration project in Ukraine.
  • ^ Deep Scan Tech (2023): Deep Scan Tech uncovers hidden structures at the site of Denmark's tallest building.
  • ^ Deep Scan Tech (2023): Deep Scan Tech is unlocking the hidden secrets of Suomenlinna's historic drydock.
  • ^ Deep Scan Tech (2023): Deep Scan Tech is solving the 130-trillion-euro question of critical infrastructure.
  • ^ Deep Scan Tech (2022): Deep Scan Tech helps protect critical sewer infrastructure from overflows.
  • ^ Deep Scan Tech (2023): Deep Scan Tech launches a new R&D project to reduce carbon footprint in the built environment.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Electrical_resistivity_tomography&oldid=1197671858"

    Categories: 
    Geophysical imaging
    Inverse problems
    Impedance measurements
    Multidimensional signal processing
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles lacking in-text citations from December 2013
    All articles lacking in-text citations
    CS1 uses Russian-language script (ru)
    CS1 Russian-language sources (ru)
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 21 January 2024, at 13:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki