Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Stoma complex  





3 Cell differentiation in the epidermis  





4 See also  





5 References  





6 External links  














Epidermis (botany)






العربية
Asturianu
Български
Bosanski
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano

Қазақша
Kreyòl ayisyen
Latina


Oʻzbekcha / ўзбекча
Polski
Português
Русский
Shqip
Simple English
Slovenčina
Slovenščina
Српски / srpski
Suomi
ி

Türkçe
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Cross-section of a flax plant stem:

  1. pith
  2. protoxylem
  3. xylem
  4. phloem
  5. sclerenchyma (bast fibre)
  6. cortex
  7. epidermis

The epidermis (from the Greek ἐπιδερμίς, meaning "over-skin") is a single layer of cells that covers the leaves, flowers, roots and stemsofplants. It forms a boundary between the plant and the external environment. The epidermis serves several functions: it protects against water loss, regulates gas exchange, secretes metabolic compounds, and (especially in roots) absorbs water and mineral nutrients. The epidermis of most leaves shows dorsoventral anatomy: the upper (adaxial) and lower (abaxial) surfaces have somewhat different construction and may serve different functions. Woody stems and some other stem structures such as potato tubers produce a secondary covering called the periderm that replaces the epidermis as the protective covering.

Description[edit]

The epidermis is the outermost cell layer of the primary plant body. In some older works the cells of the leaf epidermis have been regarded as specialized parenchyma cells,[1] but the established modern preference has long been to classify the epidermis as dermal tissue,[2] whereas parenchyma is classified as ground tissue.[3] The epidermis is the main component of the dermal tissue system of leaves (diagrammed below), and also stems, roots, flowers, fruits, and seeds; it is usually transparent (epidermal cells have fewer chloroplasts or lack them completely, except for the guard cells.)

The cells of the epidermis are structurally and functionally variable. Most plants have an epidermis that is a single cell layer thick. Some plants like Ficus elastica and Peperomia, which have a periclinal cellular division within the protoderm of the leaves, have an epidermis with multiple cell layers. Epidermal cells are tightly linked to each other and provide mechanical strength and protection to the plant. Particularly, wavy pavement cells are suggested to play a pivotal role in preventing or guiding cracks in the epidermis.[4] The walls of the epidermal cells of the above-ground parts of plants contain cutin, and are covered with a cuticle. The cuticle reduces water loss to the atmosphere, it is sometimes covered with wax in smooth sheets, granules, plates, tubes, or filaments. The wax layers give some plants a whitish or bluish surface color. Surface wax acts as a moisture barrier and protects the plant from intense sunlight and wind.[5]

Diagram of fine scale leaf internal anatomy
Diagram of fine scale leaf internal anatomy

The epidermal tissue includes several differentiated cell types: epidermal cells, guard cells, subsidiary cells, and epidermal hairs (trichomes). The epidermal cells are the most numerous, largest, and least specialized. These are typically more elongated in the leaves of monocots than in those of dicots.

Diagram of moderate scale leaf anatomy
Diagram of moderate scale leaf anatomy

Trichomes or hairs grow out from the epidermis in many species. In the root epidermis, epidermal hairs termed root hairs are common and are specialized for the absorption of water and mineral nutrients.

In plants with secondary growth, the epidermis of roots and stems is usually replaced by a periderm through the action of a cork cambium.

Stoma complex[edit]

Stoma in a tomato leaf (microscope image)

The leaf and stem epidermis is covered with pores called stomata (sing; stoma), part of a stoma complex consisting of a pore surrounded on each side by chloroplast-containing guard cells, and two to four subsidiary cells that lack chloroplasts. The stomata complex regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Typically, the stomata are more numerous over the abaxial (lower) epidermis of the leaf than the (adaxial) upper epidermis. An exception is floating leaves where most or all stomata are on the upper surface. Vertical leaves, such as those of many grasses, often have roughly equal numbers of stomata on both surfaces. The stoma is bounded by two guard cells. The guard cells differ from the epidermal cells in the following aspects:

At night, the sugar is used up and water leaves the guard cells, so they become flaccid and the stomatal pore closes. In this way, they reduce the amount of water vapor escaping from the leaf.

Cell differentiation in the epidermis[edit]

Scanning electron microscope image of Nicotiana alata leaf's epidermis, showing trichomes (hair-like appendages) and stomata (eye-shaped slits, visible at full resolution)

The plant epidermis consists of three main cell types: pavement cells, guard cells and their subsidiary cells that surround the stomata and trichomes, otherwise known as leaf hairs. The epidermis of petals also form a variation of trichomes called conical cells.[6]

Trichomes develop at a distinct phase during leaf development, under the control of two major trichome specification genes: TTG and GL1. The process may be controlled by the plant hormones gibberellins, and even if not completely controlled, gibberellins certainly have an effect on the development of the leaf hairs. GL1 causes endoreplication, the replication of DNA without subsequent cell division as well as cell expansion. GL1 turns on the expression of a second gene for trichome formation, GL2, which controls the final stages of trichome formation causing the cellular outgrowth.

Arabidopsis thaliana uses the products of inhibitory genes to control the patterning of trichomes, such as TTG and TRY. The products of these genes will diffuse into the lateral cells, preventing them from forming trichomes and in the case of TRY promoting the formation of pavement cells.

Expression of the gene MIXTA, or its analogue in other species, later in the process of cellular differentiation will cause the formation of conical cells over trichomes. MIXTA is a transcription factor.

Stomatal patterning is a much more controlled process, as the stoma affects the plant's water retention and respiration capabilities. As a consequence of these important functions, differentiation of cells to form stomata is also subject to environmental conditions to a much greater degree than other epidermal cell types.

Stomata are pores in the plant epidermis that are surrounded by two guard cells, which control the opening and closing of the aperture. These guard cells are in turn surrounded by subsidiary cells which provide a supporting role for the guard cells.

Stomata begin as stomatal meristemoids.[clarification needed] The process differs between dicots and monocots. Spacing is thought to be essentially random in dicots though mutants do show it is under some form of genetic control, but it is more controlled in monocots, where stomata arise from specific asymmetric divisions of protoderm cells. The smaller of the two cells produced becomes the guard mother cells. Adjacent epidermal cells will also divide asymmetrically to form the subsidiary cells.

Because stomata play such an important role in the plants' survival, collecting information on their differentiation is difficult by the traditional means of genetic manipulation, as stomatal mutants tend to be unable to survive. Thus the control of the process is not well understood. Some genes have been identified. TMM is thought to control the timing of stomatal initiation specification and FLP is thought to be involved in preventing the further division of the guard cells once they are formed.

Environmental conditions affect the development of stomata, in particular, their density on the leaf surface. It is thought that plant hormones, such as ethylene and cytokines, control the stomatal developmental response to the environmental conditions. Accumulation of these hormones appears to cause increased stomatal density such as when the plants are kept in closed environments.

See also[edit]

References[edit]

  1. ^ Hill, J. Ben; Overholts, Lee O; Popp, Henry W. Grove Jr., Alvin R. Botany. A textbook for colleges. Publisher: MacGraw-Hill 1960
  • ^ "9.3: Plant Tissues". Biology LibreTexts. 29 February 2020. Retrieved 19 July 2023.
  • ^ Evert, Ray F; Eichhorn, Susan E. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. Publisher: Wiley-Liss 2006. ISBN 978-0-471-73843-5
  • ^ Bidhendi, Amir J.; Lampron, Olivier; Gosselin, Frédérick P.; Geitmann, Anja (December 2023). "Cell geometry regulates tissue fracture". Nature Communications. 14: 8275. doi:10.1038/s41467-023-44075-4. PMC 10719271.
  • ^ Raven, Peter H.; Evert, Ray F.; Curtis, Helena (1981), Biology of plants, New York, N.Y.: Worth Publishers, pp. 427–28, ISBN 0-87901-132-7, OCLC 222047616
  • ^ Glover, B. J. (2000). "Differentiation in plant epidermal cells". Journal of Experimental Botany. pp. 497–505. doi:10.1093/jexbot/51.344.497. PMID 10938806.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Epidermis_(botany)&oldid=1213187589"

    Categories: 
    Plant anatomy
    Tissues (biology)
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from July 2023
    All articles needing additional references
    Wikipedia articles needing clarification from December 2016
    Webarchive template wayback links
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 11 March 2024, at 15:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki