Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Characteristics  



1.1  Physical properties  





1.2  Chemical properties  





1.3  Isotopes  







2 Compounds  



2.1  Oxides  





2.2  Halides  





2.3  Organoerbium compounds  







3 History  





4 Occurrence  





5 Production  





6 Applications  



6.1  Lasers and optics  





6.2  Other applications  







7 Biological role and precautions  





8 References  





9 Further reading  





10 External links  














Erbium






Afrikaans

ि
العربية
Armãneashti
Asturianu
Azərbaycanca
Basa Bali

 / Bân-lâm-gú
Башҡортса
Беларуская
Беларуская (тарашкевіца)

Български
Bosanski
Brezhoneg
Català
Чӑвашла
Cebuano
Čeština
Corsu
Cymraeg
Dansk
الدارجة
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Fiji Hindi
Français
Furlan
Gaeilge
Gaelg
Gàidhlig
Galego

/Hak-kâ-ngî
Хальмг

Հայերեն
ि
Hrvatski
Ido
Bahasa Indonesia
Interlingua
IsiZulu
Italiano
עברית
Jawa
Kabɩyɛ


Қазақша
Kernowek
Коми
Кыргызча
Кырык мары
Latina
Latviešu
Lëtzebuergesch
Lietuvių
Ligure
Limburgs
Livvinkarjala
La .lojban.
Magyar
Македонски


مصرى
Bahasa Melayu
 
 / Mìng-dĕ̤ng-nḡ
Монгол

Nederlands
 

Nordfriisk
Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча
ि
پنجابی
پښتو
Piemontèis
Polski
Português
Română
Runa Simi
Русский
Саха тыла

Sardu
Seeltersk
Shqip
Sicilianu
Simple English
Slovenčina
Slovenščina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
ி
Татарча / tatarça


Тоҷикӣ
Türkçe
Українська
اردو
ئۇيغۇرچە / Uyghurche
Vepsän kel
Tiếng Vit

Winaray

Yorùbá


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Erbium, 68Er
Erbium
Pronunciation/ˈɜːrbiəm/ (UR-bee-əm)
Appearancesilvery white
Standard atomic weight Ar°(Er)
  • 167.259±0.003[1]
  • 167.26±0.01 (abridged)[2]
  • Erbium in the periodic table
    Hydrogen Helium
    Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
    Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
    Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
    Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
    Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
    Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


    Er

    Fm
    holmiumerbiumthulium
    Atomic number (Z)68
    Groupf-block groups (no number)
    Periodperiod 6
    Block  f-block
    Electron configuration[Xe] 4f12 6s2
    Electrons per shell2, 8, 18, 30, 8, 2
    Physical properties
    Phase at STPsolid
    Melting point1802 K ​(1529 °C, ​2784 °F)
    Boiling point3141 K ​(2868 °C, ​5194 °F)
    Density (at 20° C)9.065 g/cm3[3]
    when liquid (at m.p.)8.86 g/cm3
    Heat of fusion19.90 kJ/mol
    Heat of vaporization280 kJ/mol
    Molar heat capacity28.12 J/(mol·K)
    Vapor pressure
    P (Pa) 1 10 100 k 10 k 100 k
    at T (K) 1504 1663 (1885) (2163) (2552) (3132)
    Atomic properties
    Oxidation states0,[4] +1, +2, +3 (a basic oxide)
    ElectronegativityPauling scale: 1.24
    Ionization energies
    • 1st: 589.3 kJ/mol
  • 2nd: 1150 kJ/mol
  • 3rd: 2194 kJ/mol
  • Atomic radiusempirical: 176 pm
    Covalent radius189±6 pm
    Color lines in a spectral range
    Spectral lines of erbium
    Other properties
    Natural occurrenceprimordial
    Crystal structurehexagonal close-packed (hcp) (hP2)
    Lattice constants

    Hexagonal close packed crystal structure for erbium

    a = 355.93 pm
    c = 558.49 pm (at 20 °C)[3]
    Thermal expansionpoly: 12.2 µm/(m⋅K) (r.t.)
    Thermal conductivity14.5 W/(m⋅K)
    Electrical resistivitypoly: 0.860 µΩ⋅m (r.t.)
    Magnetic orderingparamagnetic at 300 K
    Molar magnetic susceptibility+44300.00×10−6 cm3/mol[5]
    Young's modulus69.9 GPa
    Shear modulus28.3 GPa
    Bulk modulus44.4 GPa
    Speed of sound thin rod2830 m/s (at 20 °C)
    Poisson ratio0.237
    Vickers hardness430–700 MPa
    Brinell hardness600–1070 MPa
    CAS Number7440-52-0
    History
    Namingafter Ytterby (Sweden), where it was mined
    DiscoveryCarl Gustaf Mosander (1843)
    Isotopes of erbium
  • e
  • Main isotopes[6] Decay
    abun­dance half-life (t1/2) mode pro­duct
    160Er synth 28.58 h ε 160Ho
    162Er 0.139% stable
    164Er 1.60% stable
    165Er synth 10.36 h ε 165Ho
    166Er 33.5% stable
    167Er 22.9% stable
    168Er 27.0% stable
    169Er synth 9.4 d β 169Tm
    170Er 14.9% stable
    171Er synth 7.516 h β 171Tm
    172Er synth 49.3 h β 172Tm
     Category: Erbium
  • talk
  • edit
  • | references

    Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white[7] solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.

    Erbium's principal uses involve its pink-colored Er3+ ions, which have optical fluorescent properties particularly useful in certain laser applications. Erbium-doped glasses or crystals can be used as optical amplification media, where Er3+ ions are optically pumped at around 980 or 1480 nm and then radiate light at 1530 nm in stimulated emission. This process results in an unusually mechanically simple laser optical amplifier for signals transmitted by fiber optics. The 1550 nm wavelength is especially important for optical communications because standard single mode optical fibers have minimal loss at this particular wavelength.

    In addition to optical fiber amplifier-lasers, a large variety of medical applications (e.g. dermatology, dentistry) rely on the erbium ion's 2940 nm emission (see Er:YAG laser) when lit at another wavelength, which is highly absorbed in water in tissues, making its effect very superficial. Such shallow tissue deposition of laser energy is helpful in laser surgery, and for the efficient production of steam which produces enamel ablation by common types of dental laser.

    Characteristics[edit]

    Physical properties[edit]

    Erbium(III) chloride in sunlight, showing some pink fluorescence of Er+3 from natural ultraviolet.

    Atrivalent element, pure erbium metal is malleable (or easily shaped), soft yet stable in air, and does not oxidize as quickly as some other rare-earth metals. Its salts are rose-colored, and the element has characteristic sharp absorption spectra bands in visible light, ultraviolet, and near infrared.[8] Otherwise it looks much like the other rare earths. Its sesquioxide is called erbia. Erbium's properties are to a degree dictated by the kind and amount of impurities present. Erbium does not play any known biological role, but is thought to be able to stimulate metabolism.[9]

    Erbium is ferromagnetic below 19 K, antiferromagnetic between 19 and 80 K and paramagnetic above 80 K.[10]

    Erbium can form propeller-shaped atomic clusters Er3N, where the distance between the erbium atoms is 0.35 nm. Those clusters can be isolated by encapsulating them into fullerene molecules, as confirmed by transmission electron microscopy.[11]

    Like most rare-earth elements, erbium is usually found in the +3 oxidation state. However, it is possible for erbium to also be found in the 0, +1 and +2 oxidation states.

    Chemical properties[edit]

    Erbium metal retains its luster in dry air, however will tarnish slowly in moist air and burns readily to form erbium(III) oxide:[9]

    4 Er + 3 O2 → 2 Er2O3

    Erbium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form erbium hydroxide:[12]

    2 Er (s) + 6 H2O (l) → 2 Er(OH)3 (aq) + 3 H2 (g)

    Erbium metal reacts with all the halogens:[13]

    2 Er (s) + 3 F2 (g) → 2 ErF3 (s) [pink]
    2 Er (s) + 3 Cl2 (g) → 2 ErCl3 (s) [violet]
    2 Er (s) + 3 Br2 (g) → 2 ErBr3 (s) [violet]
    2 Er (s) + 3 I2 (g) → 2 ErI3 (s) [violet]

    Erbium dissolves readily in dilute sulfuric acid to form solutions containing hydrated Er(III) ions, which exist as rose red [Er(OH2)9]3+ hydration complexes:[13]

    2 Er (s) + 3 H2SO4 (aq) → 2 Er3+ (aq) + 3 SO2−
    4
    (aq) + 3 H2 (g)

    Isotopes[edit]

    Naturally occurring erbium is composed of 6 stable isotopes, 162
    Er
    , 164
    Er
    , 166
    Er
    , 167
    Er
    , 168
    Er
    , and 170
    Er
    , with 166
    Er
    being the most abundant (33.503% natural abundance). 32 radioisotopes have been characterized, with the most stable being 169
    Er
    with a half-lifeof9.392 d, 172
    Er
    with a half-life of 49.3 h, 160
    Er
    with a half-life of 28.58 h, 165
    Er
    with a half-life of 10.36 h, and 171
    Er
    with a half-life of 7.516 h. All of the remaining radioactive isotopes have half-lives that are less than 3.5 h, and the majority of these have half-lives that are less than 4 minutes. This element also has 26 meta states, with the most stable being 149m
    Er
    with a half-life of 8.9 s.[6]

    The isotopes of erbium range in 143
    Er
    to180
    Er
    . The primary decay mode before the most abundant stable isotope, 166
    Er
    , is electron capture, and the primary mode after is beta decay. The primary decay products before 166
    Er
    are element 67 (holmium) isotopes, and the primary products after are element 69 (thulium) isotopes.[6]

    Compounds[edit]

    Oxides[edit]

    Erbium(III) oxide powder

    Erbium(III) oxide (also known as erbia) is the only known oxide of erbium, first isolated by Carl Gustaf Mosander in 1843, and first obtained in pure form in 1905 by Georges Urbain and Charles James.[14] It has a cubic structure resembling the bixbyite motif. The Er3+ centers are octahedral.[15] The formation of erbium oxide is accomplished by burning erbium metal.[9] Erbium oxide is insoluble in water and soluble in mineral acids.

    Halides[edit]

    Erbium(III) fluoride is a pinkish powder[16] that can be produced by reacting erbium(III) nitrate and ammonium fluoride.[17] It can be used to make infrared light-transmitting materials[18] and up-converting luminescent materials.[19] Erbium(III) chloride is a violet compounds that can be formed by first heating erbium(III) oxide and ammonium chloride to produce the ammonium salt of the pentachloride ([NH4]2ErCl5) then heating it in a vacuum at 350-400 °C.[20][21][22] It forms crystals of the AlCl3 type, with monoclinic crystals and the point group C2/m.[23] Erbium(III) chloride hexahydrate also forms monoclinic crystals with the point group of P2/n (P2/c) - C42h. In this compound, erbium is octa-coordinated to form [Er(H2O)6Cl2]+ ions with the isolated Cl completing the structure.[24]

    Erbium(III) bromide is a violet solid. It is used, like other metal bromide compounds, in water treatment, chemical analysis and for certain crystal growth applications.[25] Erbium(III) iodide[26] is a slightly pink compound that is insoluble in water. It can be prepared by directly reacting erbium with iodine.[27]

    Organoerbium compounds[edit]

    Organoerbium compounds are very similar to those of the other lanthanides, as they all share an inability to undergo π backbonding. They are thus mostly restricted to the mostly ionic cyclopentadienides (isostructural with those of lanthanum) and the σ-bonded simple alkyls and aryls, some of which may be polymeric.[28]

    History[edit]

    Carl Gustaf Mosander, the scientist who discovered erbium, lanthanum and terbium.

    Erbium (for Ytterby, a village in Sweden) was discoveredbyCarl Gustaf Mosander in 1843.[29] Mosander was working with a sample of what was thought to be the single metal oxide yttria, derived from the mineral gadolinite. He discovered that the sample contained at least two metal oxides in addition to pure yttria, which he named "erbia" and "terbia" after the village of Ytterby where the gadolinite had been found. Mosander was not certain of the purity of the oxides and later tests confirmed his uncertainty. Not only did the "yttria" contain yttrium, erbium, and terbium; in the ensuing years, chemists, geologists and spectroscopists discovered five additional elements: ytterbium, scandium, thulium, holmium, and gadolinium.[30]: 701 [31][32][33][34][35]

    Erbia and terbia, however, were confused at this time. A spectroscopist mistakenly switched the names of the two elements during spectroscopy. After 1860, terbia was renamed erbia and after 1877 what had been known as erbia was renamed terbia. Fairly pure Er2O3 was independently isolated in 1905 by Georges Urbain and Charles James. Reasonably pure erbium metal was not produced until 1934 when Wilhelm Klemm and Heinrich Bommer reduced the anhydrous chloride with potassium vapor.[36] It was only in the 1990s that the price for Chinese-derived erbium oxide became low enough for erbium to be considered for use as a colorant in art glass.[37]

    Occurrence[edit]

    Monazite sand

    The concentration of erbium in the Earth crust is about 2.8 mg/kg and in seawater 0.9 ng/L.[38] (Concentration of less abundant elements may vary with location by several orders of magnitude[39] making the relative abundance unreliable). Like other rare earths, this element is never found as a free element in nature but is found bound in monazite sand ores. It has historically been very difficult and expensive to separate rare earths from each other in their ores but ion-exchange chromatography methods[40] developed in the late 20th century have greatly reduced the cost of production of all rare-earth metals and their chemical compounds.

    The principal commercial sources of erbium are from the minerals xenotime and euxenite, and most recently, the ion adsorption clays of southern China. Consequently, China has now become the principal global supplier of this element.[41] In the high-yttrium versions of these ore concentrates, yttrium is about two-thirds of the total by weight, and erbia is about 4–5%. When the concentrate is dissolved in acid, the erbia liberates enough erbium ion to impart a distinct and characteristic pink color to the solution. This color behavior is similar to what Mosander and the other early workers in the lanthanides would have seen in their extracts from the gadolinite minerals of Ytterby.

    Production[edit]

    Crushed minerals are attacked by hydrochloric or sulfuric acid that transforms insoluble rare-earth oxides into soluble chlorides or sulfates. The acidic filtrates are partially neutralized with caustic soda (sodium hydroxide) to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. After that the solution is treated with ammonium oxalate to convert rare earths into their insoluble oxalates. The oxalates are converted to oxides by annealing. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO3. The solution is treated with magnesium nitrate to produce a crystallized mixture of double salts of rare-earth metals. The salts are separated by ion exchange. In this process, rare-earth ions are sorbed onto suitable ion-exchange resin by exchange with hydrogen, ammonium or cupric ions present in the resin. The rare earth ions are then selectively washed out by suitable complexing agent.[38] Erbium metal is obtained from its oxide or salts by heating with calciumat1450 °C under argon atmosphere.[38]

    Applications[edit]

    Erbium-colored glass

    Lasers and optics[edit]

    A large variety of medical applications (i.e. dermatology, dentistry) utilize erbium ion's 2940 nm emission (see Er:YAG laser), which is highly absorbed in water (absorption coefficient about 12000/cm). Such shallow tissue deposition of laser energy is necessary for laser surgery, and the efficient production of steam for laser enamel ablation in dentistry.[42]

    Erbium-doped optical silica-glass fibers are the active element in erbium-doped fiber amplifiers (EDFAs), which are widely used in optical communications.[43] The same fibers can be used to create fiber lasers. In order to work efficiently, erbium-doped fiber is usually co-doped with glass modifiers/homogenizers, often aluminium or phosphorus. These dopants help prevent clustering of Er ions and transfer the energy more efficiently between excitation light (also known as optical pump) and the signal. Co-doping of optical fiber with Er and Yb is used in high-power Er/Yb fiber lasers. Erbium can also be used in erbium-doped waveguide amplifiers.[9]

    Other applications[edit]

    When added to vanadium as an alloy, erbium lowers hardness and improves workability.[44] An erbium-nickel alloy Er3Ni has an unusually high specific heat capacity at liquid-helium temperatures and is used in cryocoolers; a mixture of 65% Er3Co and 35% Er0.9Yb0.1Ni by volume improves the specific heat capacity even more.[45][46]

    Erbium oxide has a pink color, and is sometimes used as a colorant for glass, cubic zirconia and porcelain. The glass is then often used in sunglasses and cheap jewelry.[44][47]

    Erbium is used in nuclear technology in neutron-absorbing control rods.[9][48] or as a burnable poison in nuclear fuel design.[49]

    Biological role and precautions[edit]

    Erbium does not have a biological role, but erbium salts can stimulate metabolism. Humans consume 1 milligram of erbium a year on average. The highest concentration of erbium in humans is in the bones, but there is also erbium in the human kidneys and liver.[9] Erbium is slightly toxic if ingested, but erbium compounds are not toxic.[9] Metallic erbium in dust form presents a fire and explosion hazard.[50][51][52]

    References[edit]

    1. ^ "Standard Atomic Weights: Erbium". CIAAW. 1999.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ a b Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  • ^ Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  • ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  • ^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Erbium (Er)". American Elements: The Materials Science Company. Retrieved 2023-10-31.
  • ^ Humpidge, J. S.; Burney, W. (1879-01-01). "XIV.—On erbium and yttrium". Journal of the Chemical Society, Transactions. 35: 111–117. doi:10.1039/CT8793500111. ISSN 0368-1645.
  • ^ a b c d e f g Emsley, John (2001). "Erbium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 136–139. ISBN 978-0-19-850340-8.
  • ^ Jackson, M. (2000). "Magnetism of Rare Earth" (PDF). The IRM Quarterly. 10 (3): 1. Archived from the original (PDF) on 2017-07-12. Retrieved 2009-05-03.
  • ^ Sato, Yuta; Suenaga, Kazu; Okubo, Shingo; Okazaki, Toshiya; Iijima, Sumio (2007). "Structures of D5d-C80 and Ih-Er3N@C80 Fullerenes and Their Rotation Inside Carbon Nanotubes Demonstrated by Aberration-Corrected Electron Microscopy". Nano Letters. 7 (12): 3704. Bibcode:2007NanoL...7.3704S. doi:10.1021/nl0720152.
  • ^ Assaaoudi, H.; Fang, Z.; Butler, I. S.; Kozinski, J. A. (2008). "Synthesis of erbium hydroxide microflowers and nanostructures in subcritical water". Nanotechnology. 19 (18): 185606. Bibcode:2008Nanot..19r5606A. doi:10.1088/0957-4484/19/18/185606. PMID 21825694. S2CID 24755693.
  • ^ a b "Chemical reactions of Erbium". Webelements. Retrieved 2009-06-06.
  • ^ Aaron John Ihde (1984). The development of modern chemistry. Courier Dover Publications. pp. 378–379. ISBN 978-0-486-64235-2.
  • ^ Adachi, Gin-ya; Imanaka, Nobuhito (1998). "The Binary Rare Earth Oxides". Chemical Reviews. 98 (4): 1479–1514. doi:10.1021/cr940055h. PMID 11848940.
  • ^ "Erbium Fluoride".
  • ^ Linna Guo, Yuhua Wang, Zehua Zou, Bing Wang, Xiaoxia Guo, Lili Han, Wei Zeng (2014). "Facile synthesis and enhancement upconversion luminescence of ErF3 nano/microstructures via Li+ doping". Journal of Materials Chemistry C. 2 (15): 2765. doi:10.1039/c3tc32540g. ISSN 2050-7526. Retrieved 2019-03-26.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ 苏伟涛, 李斌, 刘定权,等. 氟化铒薄膜晶体结构与红外光学性能的关系[J]. 物理学报, 2007, 56(5):2541-2546.
  • ^ Yingxin Hao, Shichao Lv, Zhijun Ma, Jianrong Qiu (2018). "Understanding differences in Er 3+ –Yb 3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry". RSC Advances. 8 (22): 12165–12172. doi:10.1039/C8RA01245H. ISSN 2046-2069. PMC 9079277. PMID 35539388.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ Brauer, G., ed. (1963). Handbook of Preparative Inorganic Chemistry (2nd ed.). New York: Academic Press.
  • ^ Meyer, G. (1989). "The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides—The Example of Ycl 3". The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides-The Example of YCl3. Inorganic Syntheses. Vol. 25. pp. 146–150. doi:10.1002/9780470132562.ch35. ISBN 978-0-470-13256-2.
  • ^ Edelmann, F. T.; Poremba, P. (1997). Herrmann, W. A. (ed.). Synthetic Methods of Organometallic and Inorganic Chemistry. Vol. VI. Stuttgart: Georg Thieme Verlag. ISBN 978-3-13-103021-4.
  • ^ Tempelton DH, Carter GF (1954). "The Crystal Structure of Yttrium Trichloride and Similar Compounds". J Phys Chem. 58 (11): 940–943. doi:10.1021/j150521a002.
  • ^ Graebner EJ, Conrad GH, Duliere SF (1966). "Crystallographic data for solvated rare earth chlorides". Acta Crystallographica. 21 (6): 1012–1013. doi:10.1107/S0365110X66004420.
  • ^ Elements, American. "Erbium Bromide". American Elements. Retrieved 2020-11-16.
  • ^ Perry, Dale L (2011). Handbook of Inorganic Compounds (2 ed.). Taylor & Francis. p. 163. ISBN 9781439814628. Retrieved 14 December 2013.
  • ^ Elements, American. "Erbium Iodide". American Elements. Retrieved 2020-11-16.
  • ^ Greenwood and Earnshaw, pp. 1248–9
  • ^ Mosander, C. G. (1843). "On the new metals, Lanthanium and Didymium, which are associated with Cerium; and on Erbium and Terbium, new metals associated with Yttria". Philosophical Magazine. 23 (152): 241–254. doi:10.1080/14786444308644728. Note: The first part of this article, which does NOT concern erbium, is a translation of: C. G. Mosander (1842) "Något om Cer och Lanthan" [Some (news) about cerium and lanthanum], Förhandlingar vid de Skandinaviske naturforskarnes tredje möte (Stockholm) [Transactions of the Third Scandinavian Scientist Conference (Stockholm)], vol. 3, pp. 387–398.
  • ^ Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education.
  • ^ Weeks, Mary Elvira (1932). "The discovery of the elements: XVI. The rare earth elements". Journal of Chemical Education. 9 (10): 1751–1773. Bibcode:1932JChEd...9.1751W. doi:10.1021/ed009p1751.
  • ^ Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Beginnings" (PDF). The Hexagon: 41–45. Retrieved 30 December 2019.
  • ^ Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Confusing Years" (PDF). The Hexagon: 72–77. Retrieved 30 December 2019.
  • ^ Piguet, Claude (2014). "Extricating erbium". Nature Chemistry. 6 (4): 370. Bibcode:2014NatCh...6..370P. doi:10.1038/nchem.1908. PMID 24651207.
  • ^ "Erbium". Royal Society of Chemistry. 2020. Retrieved 4 January 2020.
  • ^ "Facts About Erbium". Live Science. July 23, 2013. Retrieved 22 October 2018.
  • ^ Ihde, Aaron John (1984). The development of modern chemistry. Courier Dover Publications. pp. 378–379. ISBN 978-0-486-64235-2.
  • ^ a b c Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 293–295. ISBN 978-0-07-049439-8. Retrieved 2009-06-06.
  • ^ Abundance of elements in the earth’s crust and in the sea, CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), p. 14-17
  • ^ Early paper on the use of displacement ion-exchange chromatography to separate rare earths: Spedding, F. H.; Powell, J. E. (1954). "A practical separation of yttrium group rare earths from gadolinite by ion-exchange". Chemical Engineering Progress. 50: 7–15.
  • ^ Asad, F. M. M. (2010). Optical Properties of Dye Sensitized Zinc Oxide Thin Film Deposited by Sol-gel Method (Doctoral dissertation, Universiti Teknologi Malaysia).
  • ^ Šulc, J.; Jelínková, H. (2013-01-01), Jelínková, Helena (ed.), "5 - Solid-state lasers for medical applications", Lasers for Medical Applications, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, pp. 127–176, doi:10.1533/9780857097545.2.127, ISBN 978-0-85709-237-3, retrieved 2022-04-28
  • ^ Becker, P. C.; Olsson, N. A.; Simpson, J. R. (1999). Erbium-doped fiber amplifiers fundamentals and technology. San Diego: Academic Press. ISBN 978-0-12-084590-3.
  • ^ a b Hammond, C. R. (2000). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0481-1.
  • ^ Kittel, Peter (ed.). Advances in Cryogenic Engineering. Vol. 39a.
  • ^ Ackermann, Robert A. (1997). Cryogenic Regenerative Heat Exchangers. Springer. p. 58. ISBN 978-0-306-45449-3.
  • ^ Stwertka, Albert. A Guide to the Elements, Oxford University Press, 1996, p. 162. ISBN 0-19-508083-1
  • ^ Parish, Theodore A.; Khromov, Vyacheslav V.; Carron, Igor, eds. (1999). "Use of UraniumErbium and PlutoniumErbium Fuel in RBMK Reactors". Safety issues associated with Plutonium involvement in the nuclear fuel cycle. CBoston: Kluwer. pp. 121–125. ISBN 978-0-7923-5593-9.
  • ^ Grossbeck, Renier, and Bigelow (September 2003). "Development of improved burnable poisons for commercial nuclear power reactors" (PDF). University of North Texas (UNT) digital library.{{cite web}}: CS1 maint: multiple names: authors list (link)
  • ^ Haley, T. J.; Koste, L.; Komesu, N.; Efros, M.; Upham, H. C. (1966). "Pharmacology and toxicology of dysprosium, holmium, and erbium chlorides". Toxicology and Applied Pharmacology. 8 (1): 37–43. doi:10.1016/0041-008x(66)90098-6. PMID 5921895.
  • ^ Haley, T. J. (1965). "Pharmacology and toxicology of the rare earth elements". Journal of Pharmaceutical Sciences. 54 (5): 663–70. doi:10.1002/jps.2600540502. PMID 5321124.
  • ^ Bruce, D. W.; Hietbrink, B. E.; Dubois, K. P. (1963). "The acute mammalian toxicity of rare earth nitrates and oxides". Toxicology and Applied Pharmacology. 5 (6): 750–9. doi:10.1016/0041-008X(63)90067-X. PMID 14082480.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Erbium&oldid=1233511426"

    Categories: 
    Erbium
    Chemical elements
    Chemical elements with hexagonal close-packed structure
    Ferromagnetic materials
    Lanthanides
    Reducing agents
    Hidden categories: 
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
    Commons link is on Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 9 July 2024, at 13:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki