Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  





2 Carcinogenicity  





3 Exposure  





4 Gallery  





5 See also  





6 References  





7 External links  














Erionite






Català
Deutsch
Español
Français
Íslenska

Svenska

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Erionite
General
CategoryZeolite mineral
Formula
(repeating unit)
(Na
2
,K
2
,Ca)
2
Al
4
Si
14
O
36
•15H
2
O
IMA symbolEri[1]
Crystal systemHexagonal
Crystal classDihexagonal dipyramidal (6mmm)
H-M symbol: (6/m 2/m 2/m)
Space groupP63/mmc (no. 194)
Identification
ColorWhite, Green, Gray, Orange
Crystal habitAcicular - Occurs as needle-like crystals.
Cleavage[010] Distinct
FractureSplintery
Mohs scale hardness3.5-4
LusterVitreous - silky
Streakwhite
Specific gravity2.09 - 2.13 avg = 2.11
Optical propertiesUniaxial (-)
Refractive indexnω = 1.4711, nε = 1.474
Birefringenceδ = 0.0191
Other characteristicsnon-magnetic, non-radioactive, toxic if inhaled
References[2]

Erionite is a naturally occurring fibrous mineral that belongs to a group of minerals called zeolites. It usually is found in volcanic ash that has been altered by weathering and ground water. Erionite forms brittle, wool-like fibrous masses in the hollows of rock formations and has an internal molecular structure similar to chabazite. Some properties of erionite are similar to the properties of asbestos; however, erionite is not currently regulated by the U.S. Environmental Protection Agency and there are no occupational exposure limits for erionite fibers.[3][4] Erionite was first described by A.S. Eakle in 1898, as white woolly fibrous masses in cavities in rhyolite lava near Durkee, Oregon. It was originally thought to be another relatively rare zeolite named offretite, which is very similar to erionite in appearance and chemical composition.[5]

Properties

[edit]

The chemical composition of erionite is approximately represented by the formula (Na
2
,K
2
,Ca)
2
Al
4
Si
14
O
36
•15H
2
O
. It can be differentiated into Erionite-Na, Erionite-K, and Erionite-Ca forms based on the most dominant component. Erionite has a hexagonal, cage-like structure composed of a framework of linked tetrahedra. It consists of white prismatic crystals in radiating groups of crystal fiber. Erionite absorbs up to 20% of its weight in water, has a specific gravity of 2.02 to 2.13, and has gas absorption, ion exchange, and catalytic properties that are highly selective and depend on the molecular size of the absorbed compounds.[6] Zeolites, in general, have good thermal stability, rehydration kinetics, and water vapor adsorption capacity.

Carcinogenicity

[edit]

Erionite is known to be a human carcinogen and is listed by the International Agency for Research on Cancer as a Group 1 Carcinogen.[7] The prevalence of malignant pleural and peritoneal mesothelioma due to erionite exposure in the Cappadocia region of Central Anatolia is very high.[8] Descriptive studies have reported an excess of mortality from mesothelioma in individuals living in three Turkish villages where there was chronic exposure to erionite; only two cases of mesothelioma occurred in the control village, both in women born elsewhere.[9][10] An excess of lung cancer also was reported in two of the three villages contaminated with erionite. Respirable erionite fibers were detected in air samples collected from the affected villages, and lung tissue samples collected from mesothelioma cases contained erionite fibers. A higher proportion of ferruginous bodies with a zeolite core were found in inhabitants of the contaminated villages than of those from the two control villages.[6][7][9] Erionite is reportedly present in the local volcanic tuff.[10]

There is sufficient evidence of carcinogenicity of erionite in experimental animals. Rats exposed to erionite by inhalation or injection (intrapleuralorintraperitoneal) and mice exposed by intraperitoneal injection had a high incidence of mesothelioma.[6][7] Additionally, although carcinogenic properties of erionite have been discovered by investigating the erionite found in Central Anatolia, Turkey, no difference in their carcinogenic capacity has been observed when it was compared to the erionite obtained in North Dakota, USA.[11]

Exposure

[edit]

Deposits of fibrous erionite are located in Arizona, Nevada, Oregon, and Utah, as well in urban Auckland in New Zealand.[12] These zeolite beds may be up to 15 ft (4.6 m) thick and may lie in surface outcroppings. Erionite fibers have been detected in samples of road dust in Nevada and U.S. residents of the Intermountain West may be potentially exposed to fibrous erionite in ambient air.[6][13] In the summer of 2009 North Dakota began a study of possible erionite exposure among residents.[14] Erionite has also been identified in samples from the Tertiary Arikaree Formation in southeast Montana and northwest South Dakota.

In the past, occupational exposure occurred from erionite mining and production operation. Nowadays potential occupational exposure to erionite usually occurs during the production and mining of other zeolites. Erionite was also reported to be a minor component in some commercial zeolites.[15] Therefore, the use of other zeolites may result in potential exposure to erionite for the workers and the general population who use the zeolites in a variety of processes and products. Total dust exposures for miners in an open-pit zeolite mine that contained some erionite in Arizona ranged from 0.01 to 13.7 mg/m3; respirable dust in the mining area was 0.01 to 1.4 mg/m3.[6] Erionite is held responsible for the high incidence of lung cancer, asbestosis, pleural mesothelioma and other lung problems in the Turkish village of Tuzkoy near Nevsehir in the popular tourist region of Cappadoccia.[16]

[edit]

See also

[edit]

References

[edit]
  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  • ^ "General Erionite-Na Information". Mineralogy Database. Retrieved 13 July 2009.
  • ^ "Erionite". North Dakota Department of Health. Archived from the original on 12 June 2010. Retrieved 13 July 2009.
  • ^ "Erionite". National Cancer Institute. 20 March 2015. Retrieved 21 August 2018.
  • ^ "The Mineral Erionite". Amethyst Galleries' Mineral Gallery. Retrieved 13 July 2009.
  • ^ a b c d e "Silica and some silicates". IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 42. Lyon, France: 1–239. 1987. PMID 2824337.
  • ^ a b c "Overall evaluations of carcinogenicity: An updating of IARC Monographs volumes 1 to 42". IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Supplement / World Health Organization, International Agency for Research on Cancer. 7. Lyon, France: 1–440. 1987. PMID 3482203.
  • ^ Dikensoy O (July 2008). "Mesothelioma due to environmental exposure to erionite in Turkey". Current Opinion in Pulmonary Medicine. 14 (4): 322–5. doi:10.1097/MCP.0b013e3282fcea65. PMID 18520266. S2CID 31259709.
  • ^ a b Baris YI (1991). "Fibrous zeolite (erionite)-related diseases in Turkey". American Journal of Industrial Medicine. 19 (3): 374–8. doi:10.1002/ajim.4700190310. PMID 1848965.
  • ^ a b Baris YI, Grandjean P (March 2006). "Prospective study of mesothelioma mortality in Turkish villages with exposure to fibrous zeolite". Journal of the National Cancer Institute. 98 (6): 414–7. doi:10.1093/jnci/djj106. PMID 16537834.
  • ^ Carbone; et al. (2011). "Erionite exposure in North Dakota and Turkish villages with mesothelioma". PNAS. 108 (33): 13618–23. Bibcode:2011PNAS..10813618C. doi:10.1073/pnas.1105887108. PMC 3158231. PMID 21788493.
  • ^ Salmond, Jennifer; Brook, Martin (23 September 2020). "What lies beneath: is this the new asbestos?". Newsroom. Retrieved 5 March 2024.
  • ^ Rom W. N.; Casey K. R.; Parry W. T.; Mjaatvedt C. H.; Moatamed F. (1983). "Health implications of natural fibrous zeolites for the Intermountain West". Environ Res. 30 (1): 1–8. Bibcode:1983ER.....30....1R. doi:10.1016/0013-9351(83)90159-7. PMID 6299723.
  • ^ "North Dakota Erionite Study Finally Underway". Mesothelioma SOS. 16 June 2009. Archived from the original on 14 July 2011. Retrieved 13 July 2009.
  • ^ Mondale, K. D., F. A. Mumpton and F. F. Aplan. 1978. Beneficiation of Natural Zeolites from Bowie, Arizona: A Preliminary Report. In Natural Zeolites: Occurrences, Properties, Uses. L. B. Sand and F. A. Mumpton, eds. New York: Pergamon Press. p. 527-537.
  • ^ ERİSA DAUTAJ ŞENERDEM (6 October 2010). "Burial planned for Turkish 'cancer city'". Hürriyet Daily News. Retrieved 20 June 2012.
  • Public Domain This article incorporates public domain material from Erionite (PDF). United States Government.

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Erionite&oldid=1228655003"

    Categories: 
    Zeolites
    IARC Group 1 carcinogens
    Hexagonal minerals
    Minerals in space group 194
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from May 2023
    Wikipedia articles incorporating text from public domain works of the United States Government
     



    This page was last edited on 12 June 2024, at 12:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki