Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  





2 Preparation  



2.1  History  







3 Natural occurrence  





4 Use  





5 Hazards  





6 References  





7 Literature  





8 External links  














Ethenone






العربية
تۆرکجه
Dansk
Deutsch
Ελληνικά
Esperanto
فارسی
Français
Italiano
Magyar
Nederlands

Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ethenone
Structural formula
Space-filling model
Names
Preferred IUPAC name

Ethenone[1]

Other names

Ketene
Carbomethene
Keto-ethylene

Identifiers

CAS Number

3D model (JSmol)

Beilstein Reference

1098282
ChEBI
ChemSpider
ECHA InfoCard 100.006.671 Edit this at Wikidata
EC Number
  • 207-336-9

PubChem CID

RTECS number
  • OA7700000
UNII

CompTox Dashboard (EPA)

  • InChI=1S/C2H2O/c1-2-3/h1H2 checkY

    Key: CCGKOQOJPYTBIH-UHFFFAOYSA-N checkY

  • InChI=1/C2H2O/c1-2-3/h1H2

    Key: CCGKOQOJPYTBIH-UHFFFAOYSA-N

  • InChI=1/C2H2O/c1-2-3/h1H2

    Key: CCGKOQOJPYTBIH-UHFFFAOYAO

  • O=C=C

Properties

Chemical formula

C2H2O
Molar mass 42.037 g/mol
Appearance Colourless gas
Odor penetrating
Density 1.93 g/cm3
Melting point −150.5 °C (−238.9 °F; 122.6 K)
Boiling point −56.1 °C (−69.0 °F; 217.1 K)

Solubility in water

decomposes
Solubility soluble in acetone
ethanol
ethyl ether
aromatic solvents
halocarbons
Vapor pressure >1 atm (20°C)[2]

Refractive index (nD)

1.4355
Thermochemistry

Heat capacity (C)

51.75 J/K mol

Std enthalpy of
formation
fH298)

-87.24 kJ/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
4
4
1
Flash point −107 °C (−161 °F; 166 K)
Explosive limits 5.5-18%
Lethal dose or concentration (LD, LC):

LD50 (median dose)

1300 mg/kg (oral, rat)

LC50 (median concentration)

17 ppm (mouse, 10 min)[3]

LCLo (lowest published)

23 ppm (mouse, 30 min)
53 ppm (rabbit, 2 hr)
53 ppm (guinea pig, 2 hr)
750 ppm (cat, 10 min)
200 ppm (monkey, 10 min)
50 ppm (mouse, 10 min)
1000 ppm (rabbit, 10 min)[3]
NIOSH (US health exposure limits):

PEL (Permissible)

TWA 0.5 ppm (0.9 mg/m3)[2]

REL (Recommended)

TWA 0.5 ppm (0.9 mg/m3) ST 1.5 ppm (3 mg/m3)[2]

IDLH (Immediate danger)

5 ppm[2]
Safety data sheet (SDS) External MSDS

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Inorganic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2OorH2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.[4]

Properties[edit]

Ethenone is a highly reactive gas (atstandard conditions) and has a sharp irritating odour. It is only reasonably stable at low temperatures (−80 °C). It must therefore always be prepared for each use and processed immediately, otherwise a dimerization to diketene occurs or it reacts to polymers that are difficult to handle. The polymer content formed during the preparation is reduced, for example, by adding sulfur dioxide to the ketene gas.[5] Because of its cumulative double bonds, ethenone is highly reactive and reacts in an addition reaction H-acidic compounds to the corresponding acetic acid derivatives. It does for example react with water to acetic acid or with primaryorsecondary amines to the corresponding acetamides.

Preparation[edit]

Ethenone is produced by thermal dehydration of acetic acid at 700–750 °C in the presence of triethyl phosphate as a catalyst:[6][7]

CH3CO2H → CH2=C=O + H2O

It has also been produced on a laboratory scale by the thermolysisofacetoneat600–700 °C.[8][9]

CH3COCH3 →CH2=C=O + CH4

This reaction is called the Schmidlin ketene synthesis.[10]

On a laboratory scale it can be produced by the thermal decomposition of Meldrum's acid at temperatures greater than 200 °C.[citation needed]

History[edit]

When passed through heated pipes or electrically heated metal (like copper) wires at 500-600 °C in the presence of carbon disulfide, acetone decomposes into methane and ethenone, with 95% yield.[11][12] Ethenone was discovered at the same time by Hermann Staudinger (by reaction of bromoacetyl bromide with metallic zinc)[13][14] The dehydration of acetic acid was reported in 1910.[15]

The thermal decomposition of acetic anhydride was also described.[16]

Natural occurrence[edit]

Ethenone has been observed to occur in space, in comets or in gas as part of the interstellar medium.[17]

Use[edit]

Ethenone is used to make acetic anhydride from acetic acid. Generally it is used for the acetylation of chemical compounds.[18]

Reactions with ammonia, water, ethanol, and acetic acid
Reactions with ammonia, water, ethanol, and acetic acid

Mechanism of the above reactions
Mechanism of the above reactions

Ethenone reacts with methanal in the presence of catalysts such as Lewis acids (AlCl3, ZnCl2 or BF3) to give β-propiolactone.[19] The technically most significant use of ethenone is the synthesis of sorbic acid by reaction with 2-butenal (crotonaldehyde) in toluene at about 50 °C in the presence of zinc salts of long-chain carboxylic acids. This produces a polyester of 3-hydroxy-4-hexenoic acid, which is thermally[20] or hydrolytically depolymerized to sorbic acid.

Ethenone is very reactive, tending to react with nucleophiles to form an acetyl group. For example, it reacts with water to form acetic acid;[21] with acetic acid to form acetic anhydride; with ammonia and amines to form ethanamides;[22] and with dry hydrogen halides to form acetyl halides.[23]

The formation of acetic acid likely occurs by an initial formation of 1,1-dihydroxyethene, which then tautomerizes to give the final product.[24]

Ethenone will also react with itself via [2 + 2] photocycloadditions to form cyclic dimers known as diketenes. For this reason, it should not be stored for long periods.[25]

Hazards[edit]

Exposure to concentrated levels causes humans to experience irritation of body parts such as the eye, nose, throat and lungs. Extended toxicity testing on mice, rats, guinea pigs and rabbits showed that ten-minute exposures to concentrations of freshly generated ethenone as low as 0.2 mg/liter (116 ppm) may produce a high percentage of deaths in small animals. These findings show ethenone is toxicologically identical to phosgene.[26][18]

The formation of ketene in the pyrolysisofvitamin E acetate, an additive of some e-liquid products, is one possible mechanism of the reported pulmonary damage[27] caused by electronic cigarette use.[28] A number of patents describe the catalytic formation of ketene from carboxylic acids and acetates, using a variety of metals or ceramics, some of which are known to occur in e-cigarette devices from patients with e-cigarette or vaping product-use associated lung injury (EVALI).[29][30]

Occupational exposure limits are set at 0.5 ppm (0.9 mg/m3) over an eight-hour time-weighted average.[31]AnIDLH limit is set at 5 ppm, as this is the lowest concentration productive of a clinically relevant physiologic response in humans.[32]

References[edit]

  1. ^ "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 723. doi:10.1039/9781849733069-FP001 (inactive 2024-05-10). ISBN 978-0-85404-182-4.{{cite book}}: CS1 maint: DOI inactive as of May 2024 (link)
  • ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0367". National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b "Ketene". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ Miller, Raimund; Abaecherli, Claudio; Said, Adel; Jackson, Barry (2001). "Ketenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a15_063. ISBN 3527306730.
  • ^ EP 0377438, R. Bergamin et al., issued 1990-06-11, assigned to Lonza AG 
  • ^ Miller, Raimund; Abaecherli, Claudio; Said, Adel; Jackson, Barry (2001). "Ketenes". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a15_063. ISBN 978-3-527-30385-4.
  • ^ Arpe, Hans-Jürgen (2007), Industrielle organische Chemie: Bedeutende vor- und Zwischenprodukte (in German) (6th ed.), Weinheim: Wiley-VCH, pp. 200–1, ISBN 978-3-527-31540-6[permanent dead link]
  • ^ Weygand C (1972). Hilgetag G, Martini A (eds.). Weygand/Hilgetag Preparative Organic Chemistry (4th ed.). New York: John Wiley & Sons, Inc. pp. 1031–1032. ISBN 978-0471937494.
  • ^ Hurd CD, Kamm O (1941). "Ketene in Organic Syntheses". Organic Syntheses. Vol. Collective Vol. 1. p. 330.
  • ^ Schmidlin J, Bergman M (1910). "Darstellung des Ketens aus Aceton" [Preparation of ketene from acetone]. Berichte der Deutschen Chemischen Gesellschaft (in German). 43 (3): 2821–2823. doi:10.1002/cber.19100430340.
  • ^ K.-H. Lautenschläger, W. Schröter, A. Wanninger, "Taschenbuch der Chemie", 20. Aufl. 2006, ISBN 978-3-8171-1761-1.
  • ^ "Ketene". Organic Syntheses. doi:10.15227/orgsyn.004.0039.
  • ^ H. Staudinger H. W. Klever (1908): "Keten. Bemerkung zur Abhandlung zur Abhandlung der HHrn. V.T. Wilsmore und A. W. Stewart". Berichte der deutschen chemischen Gesellschaft, volume 41, issue 1, pages 1516-1517. doi:10.1002/cber.190804101275
  • ^ Tidwell, T. T. (2005), "Ein Jahrhundert Ketene (1905–2005): die Entdeckung einer vielseitigen Klasse reaktiver Intermediate". Angewandte Chemie, volume 117, pages 5926–5933. doi:10.1002/ange.200500098
  • ^ J. Schmidlin, M. Bergman (1910): Berichte der deutschen chemischen Gesellschaft, volume 43, pages 2821-. doi:10.1002/cber.19100430340.
  • ^ Norman Thomas Mortimer Wilsmore (1907): "Keten". Journal of the Chemical Society, Transactions, volume 91, article CLXXXVIII (188), pages 1938-1941. doi:10.1039/ct9079101938
  • ^ Hudson, Reggie L.; Loeffler, Mark J. (31 July 2013). "Ketene Formation in Interstellar Ices: A Laboratory Study". The Astrophysical Journal. 773 (2): 109. Bibcode:2013ApJ...773..109H. doi:10.1088/0004-637x/773/2/109. hdl:2060/20140010162. S2CID 37437108.
  • ^ a b Entry on Diketen. at: Römpp Online. Georg Thieme Verlag, retrieved 16. Juni 2014.
  • ^ Hans-Jürgen Arpe, "Industrielle Organische Chemie", 6. Aufl., 2007, WILEY-VCH Verlag, Weinheim, ISBN 978-3-527-31540-6.
  • ^ EP 1295860, D. Decker et al., issued 26. März 2003-03-26, assigned to Nutrinova GmbH 
  • ^ Tidwell, p. 11.
  • ^ Tidwell, p. 560.
  • ^ ChemSpider http://www.chemspider.com/Chemical-Structure.9643.html
  • ^ Nguyen, Minh Tho; Raspoet, Greet (1999). "The hydration mechanism of ketene: 15 years later". Can. J. Chem. 77 (5–6): 817–829. doi:10.1139/v99-090.
  • ^ Christoph Taeschler :Ketenes, Ketene Dimers, and Related Substances, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2010
  • ^ H. A. Wooster; C. C. Lushbaugh; C. E. Redeman (1946). "The Inhalation Toxicity of Ketene and of Ketene Dimer". J. Am. Chem. Soc. 68 (12): 2743. doi:10.1021/ja01216a526.
  • ^ "The Vaping-Related Lung Disease Outbreak May be Coming to an End". 20 December 2019.
  • ^ Wu, Dan; O’Shea, Donal F. (24 March 2020). "Potential for release of pulmonary toxic ketene from vaping pyrolysis of vitamin E acetate". Proceedings of the National Academy of Sciences. 117 (12): 6349–6355. Bibcode:2020PNAS..117.6349W. doi:10.1073/pnas.1920925117. PMC 7104367. PMID 32156732.
  • ^ Attfield, Kathleen R.; Chen, Wenhao; Cummings, Kristin J.; Jacob, Peyton; O’Shea, Donal F.; Wagner, Jeff; Wang, Ping; Fowles, Jefferson (15 October 2020). "Potential of Ethenone (Ketene) to Contribute to Electronic Cigarette, or Vaping, Product Use–associated Lung Injury". American Journal of Respiratory and Critical Care Medicine. 202 (8): 1187–1189. doi:10.1164/rccm.202003-0654LE. PMID 32551843. S2CID 219919028.
  • ^ U.S. patent No. 5475144. Catalyst and process for synthesis of ketenes from carboxylic acids. Dec 12, 1995. https://patents.google.com/patent/US5475144A/en
  • ^ Centers for Disease Control and Prevention (4 April 2013). "Ketene". NIOSH Pocket Guide to Chemical Hazards. Retrieved 13 November 2013.
  • ^ Centers for Disease Control and Prevention (May 1994). "Ketene". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). Retrieved 13 November 2013.
  • Literature[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Ethenone&oldid=1223124419"

    Categories: 
    Ketenes
    Gases
    Pulmonary agents
    Acetylating agents
    Hidden categories: 
    CS1 maint: DOI inactive as of May 2024
    CS1 German-language sources (de)
    All articles with dead external links
    Articles with dead external links from March 2024
    Articles with permanently dead external links
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Chemical articles with multiple compound IDs
    Multiple chemicals in an infobox that need indexing
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from January 2024
    Commons category link from Wikidata
    Articles with GND identifiers
     



    This page was last edited on 10 May 2024, at 01:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki