Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Muonic atoms  



1.1  Muonic hydrogen  





1.2  Muonic helium (Hydrogen-4.1)  







2 Hadronic atoms  





3 Onium  





4 Hypernuclear atoms  





5 Quasiparticle atoms  





6 Exotic molecules  





7 See also  





8 References  














Exotic atom






Afrikaans
العربية
Català
Čeština
Deutsch
Ελληνικά
Español
فارسی
Français

Bahasa Indonesia
Italiano
Македонски
Nederlands

Norsk bokmål
Norsk nynorsk
Piemontèis
Polski
Português
Русский
Simple English
Slovenščina
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This article needs additional citations for verification. Please help improve this articlebyadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Exotic atom" – news · newspapers · books · scholar · JSTOR
(December 2021) (Learn how and when to remove this message)

Anexotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms).[1][2] Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.

Muonic atoms[edit]

Hydrogen 4.1 picture
Muonic helium, made out of 2 protons, 2 neutrons, 1 muon and 1 electron.

In a muonic atom (previously called a mu-mesic atom, now known to be a misnomer as muons are not mesons),[3] an electron is replaced by a muon, which, like the electron, is a lepton. Since leptons are only sensitive to weak, electromagnetic and gravitational forces, muonic atoms are governed to very high precision by the electromagnetic interaction.

Since a muon is more massive than an electron, the Bohr orbits are closer to the nucleus in a muonic atom than in an ordinary atom, and corrections due to quantum electrodynamics are more important. Study of muonic atoms' energy levels as well as transition rates from excited states to the ground state therefore provide experimental tests of quantum electrodynamics.

Muon-catalyzed fusion is a technical application of muonic atoms.

Other muonic atoms can be formed when negative muons interact with ordinary matter.[4] The muon in muonic atoms can either decay or get captured by a proton. Muon capture is very important in heavier muonic atoms, thus shorten the muon's lifetime from 2.2 μs to only 0.08 μs.[4]

Muonic hydrogen[edit]

Muonic hydrogen is like normal hydrogen with the electron replaced by a negative muon—that is a proton orbited by a muon. It is important in addressing the proton radius puzzle.

Muonic helium (Hydrogen-4.1)[edit]

The symbol 4.1H (Hydrogen-4.1) has been used to describe the exotic atom muonic helium (4He-μ), which is like helium-4 in having two protons and two neutrons.[5] However one of its electrons is replaced by a muon, which also has charge –1. Because the muon's orbital radius is less than 1/200th the electron's orbital radius (due to the mass ratio), the muon can be considered as a part of the nucleus. The atom then has a nucleus with two protons, two neutrons and one muon, with total nuclear charge +1 (from two protons and one muon) and only one electron outside, so that it is effectively an isotope of hydrogen instead of an isotope of helium. A muon's weight is approximately 0.1 Da so the isotopic mass is 4.1. Since there is only one electron outside the nucleus, the hydrogen-4.1 atom can react with other atoms. Its chemical behavior behaves more like a hydrogen atom than an inert helium atom. [5][6][7]

Hadronic atoms[edit]

Ahadronic atom is an atom in which one or more of the orbital electrons are replaced by a negatively charged hadron.[8] Possible hadrons include mesons such as the pionorkaon, yielding a pionic atom[9] or a kaonic atom (see Kaonic hydrogen), collectively called mesonic atoms; antiprotons, yielding an antiprotonic atom; and the
Σ
particle, yielding a
Σ
orsigmaonic atom.[10][11][12]

Unlike leptons, hadrons can interact via the strong force, so the orbitals of hadronic atoms are influenced by nuclear forces between the nucleus and the hadron. Since the strong force is a short-range interaction, these effects are strongest if the atomic orbital involved is close to the nucleus, when the energy levels involved may broaden or disappear because of the absorption of the hadron by the nucleus.[2][11] Hadronic atoms, such as pionic hydrogen and kaonic hydrogen, thus provide experimental probes of the theory of strong interactions, quantum chromodynamics.[13]

Onium[edit]

Anonium (plural: onia) is the bound state of a particle and its antiparticle. The classic onium is positronium, which consists of an electron and a positron bound together as a metastable state, with a relatively long lifetime of 142 ns in the triplet state.[14] Positronium has been studied since the 1950s to understand bound states in quantum field theory. A recent development called non-relativistic quantum electrodynamics (NRQED) used this system as a proving ground.

Pionium, a bound state of two oppositely charged pions, is useful for exploring the strong interaction. This should also be true of protonium, which is a proton–antiproton bound state. Understanding bound states of pionium and protonium is important in order to clarify notions related to exotic hadrons such as mesonic molecules and pentaquark states. Kaonium, which is a bound state of two oppositely charged kaons, has not been observed experimentally yet.

The true analogs of positronium in the theory of strong interactions, however, are not exotic atoms but certain mesons, the quarkonium states, which are made of a heavy quark such as the charmorbottom quark and its antiquark. (Top quarks are so heavy that they decay through the weak force before they can form bound states.) Exploration of these states through non-relativistic quantum chromodynamics (NRQCD) and lattice QCD are increasingly important tests of quantum chromodynamics.

Muonium, despite its name, is not an onium state containing a muon and an antimuon, because IUPAC assigned that name to the system of an antimuon bound with an electron. However, the production of a muon–antimuon bound state, which is an onium (called true muonium), has been theorized.[15] The same applies to the ditauonium (or "true tauonium") exotic QED atom.[16]

Hypernuclear atoms[edit]

Atoms may be composed of electrons orbiting a hypernucleus that includes strange particles called hyperons. Such hypernuclear atoms are generally studied for their nuclear behaviour, falling into the realm of nuclear physics rather than atomic physics.

Quasiparticle atoms[edit]

Incondensed matter systems, specifically in some semiconductors, there are states called excitons, which are bound states of an electron and an electron hole.

Exotic molecules[edit]

An exotic molecule contains one or more exotic atoms.

"Exotic molecule" can also refer to a molecule having some other uncommon property such as a pyramidal hexamethylbenzene#Dication and a Rydberg atom.

See also[edit]

  • Antiprotonic helium
  • Borromean nucleus
  • Exotic matter
  • Halo nucleus
  • Kaonic hydrogen
  • Lattice QCD
  • Muonium
  • Neutronium
  • Pionium
  • Positronium
  • Quantum chromodynamics
  • Quantum electrodynamics
  • Quarkonium
  • References[edit]

    1. ^ §1.8, Constituents of Matter: Atoms, Molecules, Nuclei and Particles, Ludwig Bergmann, Clemens Schaefer, and Wilhelm Raith, Berlin: Walter de Gruyter, 1997, ISBN 3-11-013990-1.
  • ^ a b Exotic atoms Archived 2007-12-22 at the Wayback Machine, AccessScience, McGraw-Hill. accessdate=September 26, 2007.
  • ^ Dr. Richard Feynman's Douglas Robb Memorial Lectures
  • ^ a b Devons, S.; Duerdoth, I. (1969). "Muonic Atoms". In Baranger, M.; Vogt, E. (eds.). Advances in Nuclear Physics. Springer. pp. 295–423. doi:10.1007/978-1-4684-8343-7_5. ISBN 978-1-4684-8345-1.
  • ^ a b Fleming, D. G.; Arseneau, D. J.; Sukhorukov, O.; Brewer, J. H.; Mielke, S. L.; Schatz, G. C.; Garrett, B. C.; Peterson, K. A.; Truhlar, D. G. (28 Jan 2011). "Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H2". Science. 331 (6016): 448–450. Bibcode:2011Sci...331..448F. doi:10.1126/science.1199421. PMID 21273484. S2CID 206530683.
  • ^ Moncada, F.; Cruz, D.; Reyes, A (2012). "Muonic alchemy: Transmuting elements with the inclusion of negative muons". Chemical Physics Letters. 539: 209–221. Bibcode:2012CPL...539..209M. doi:10.1016/j.cplett.2012.04.062.
  • ^ Moncada, F.; Cruz, D.; Reyes, A. (10 May 2013). "Electronic properties of atoms and molecules containing one and two negative muons". Chemical Physics Letters. 570: 16–21. Bibcode:2013CPL...570...16M. doi:10.1016/j.cplett.2013.03.004.
  • ^ Deloff, A. (2003). Fundamentals in Hadronic Atom Theory. River Edge, New Jersey: World Scientific. p. 3. ISBN 981-238-371-9.
  • ^ Hori, M.; Aghai-Khozani, H.; Sótér, A.; Dax, A.; Barna, D. (6 May 2020). "Laser spectroscopy of pionic helium atoms". Nature. 581 (7806): 37–41. Bibcode:2020Natur.581...37H. doi:10.1038/s41586-020-2240-x. PMID 32376962. S2CID 218527999.
  • ^ p. 8, §16.4, §16.5, Deloff.
  • ^ a b The strange world of the exotic atom, Roger Barrett, Daphne Jackson and Habatwa Mweene, New Scientist, August 4, 1990. accessdate=September 26, 2007.
  • ^ p. 180, Quantum Mechanics, B. K. Agarwal and Hari Prakash, New Delhi: Prentice-Hall of India Private Ltd., 1997. ISBN 81-203-1007-1.
  • ^ Exotic atoms cast light on fundamental questions, CERN Courier, November 1, 2006. accessdate=September 26, 2007.
  • ^ Adkins, G. S.; Fell, R. N.; Sapirstein, J. (29 May 2000). "Order α2 Corrections to the Decay Rate of Orthopositronium". Physical Review Letters. 84 (22): 5086–5089. arXiv:hep-ph/0003028. Bibcode:2000PhRvL..84.5086A. doi:10.1103/PhysRevLett.84.5086. PMID 10990873. S2CID 1165868.
  • ^ DOE/SLAC National Accelerator Laboratory (June 4, 2009). "Theorists Reveal Path To True Muonium – Never-seen Atom". ScienceDaily. Retrieved June 7, 2009.
  • ^ d'Enterria, David; Perez-Ramos, Redamy; Shao, Hua-Sheng (2022). "Ditauonium spectroscopy". European Physical Journal C. 82 (10): 923. arXiv:2204.07269. Bibcode:2022EPJC...82..923D. doi:10.1140/epjc/s10052-022-10831-x. S2CID 248218441.
  • Elementary

    Fermions

  • Down (quark
  • antiquark)
  • Charm (quark
  • antiquark)
  • Strange (quark
  • antiquark)
  • Top (quark
  • antiquark)
  • Bottom (quark
  • antiquark)
  • Leptons

  • Positron
  • Muon
  • Antimuon
  • Tau
  • Antitau
  • Neutrino
  • Bosons

    Gauge

  • Gluon
  • W and Z bosons
  • Scalar

    Ghost fields

    Hypothetical

    Superpartners

  • Photino
  • Others

  • Chargino
  • Higgsino
  • Neutralino
  • Sfermion (Stop squark)
  • Others

  • Curvaton
  • Dilaton
  • Dual graviton
  • Graviphoton
  • Graviton
  • Inflaton
  • Leptoquark
  • Magnetic monopole
  • Majoron
  • Majorana fermion
  • Dark photon
  • Preon
  • Sterile neutrino
  • Tachyon
  • W′ and Z′ bosons
  • X and Y bosons
  • Composite

    Hadrons

  • Neutron
  • Antineutron
  • Delta baryon
  • Lambda baryon
  • Sigma baryon
  • Xi baryon
  • Omega baryon
  • Mesons

  • Rho meson
  • Eta and eta prime mesons
  • Bottom eta meson
  • Phi meson
  • J/psi meson
  • Omega meson
  • Upsilon meson
  • Kaon
  • B meson
  • D meson
  • Quarkonium
  • Exotic hadrons

  • Pentaquark
  • Others

  • Atoms
  • Exotic atoms
  • Superatoms
  • Molecules
  • Hypothetical

    Mesons

  • Theta meson
  • T meson
  • Others

  • Pomeron
  • Diquark
  • R-hadron
  • Quasiparticles

  • Davydov soliton
  • Dropleton
  • Exciton
  • Fracton
  • Hole
  • Magnon
  • Phonon
  • Plasmaron
  • Plasmon
  • Polariton
  • Polaron
  • Roton
  • Trion
  • Lists

  • Mesons
  • Particles
  • Quasiparticles
  • Timeline of particle discoveries
  • Related

  • Standard Model
  • Subatomic particles
  • Particles
  • Antiparticles
  • Nuclear physics
  • Eightfold way
  • Exotic matter
  • Massless particle
  • Relativistic particle
  • Virtual particle
  • Wave–particle duality
  • Particle chauvinism
  • Physics portal


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Exotic_atom&oldid=1232362232"

    Categories: 
    Exotic atoms
    Quantum chromodynamics
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2021
    All articles needing additional references
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 3 July 2024, at 10:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki