Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Characteristics  





3 Uses  





4 See also  





5 References  














Expanded clay aggregate






العربية
Azərbaycanca
Беларуская
Беларуская (тарашкевіца)
Català
Čeština
Dansk
Deutsch
Eesti
Español
Esperanto
فارسی
Français
Galego
Bahasa Indonesia
Italiano
Қазақша
Lietuvių
Монгол
Nederlands
Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
Polski
Português
Русский
Suomi
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Heat-expanded lightweight clay pebbles.

Lightweight expanded clay aggregate (LECA) or expanded clay (exclay) is a lightweight aggregate made by heating clay to around 1,200 °C (2,190 °F) in a rotary kiln. The heating process causes gases trapped in the clay to expand, forming thousands of small bubbles and giving the material a porous structure. LECA has an approximately round or oblong shape due to circular movement in the kiln and is available in different sizes and densities. LECA is used to make lightweight concrete products and other uses.

History[edit]

LECA was developed about 1917 in Kansas City, Missouri, to the production in a rotary kiln of a patented expanded aggregate known as Haydite which was used in the construction of SS Selma, an ocean-going ship launched in 1919. Following in the USA was the development of a series of aggregates known as Gravelite, Perlite, Rocklite, etc. In Europe, LECA commenced in Denmark, Germany, Netherlands, and UK.

Characteristics[edit]

Root ball of a hydroponically-grown cannabis plant with aggregate embedded in it
Cleaned root ball and main stem sitting atop the total amount of aggregate used to grow a single plant

LECA is usually produced in different sizes and densities from 0.1 millimetres (0.004 in) up to 25 millimetres (1.0 in), commonly 0–4 mm, 4–10 mm, 10–25 mm and densities of 250, 280, 330, and 510 kg/m3. LECA boulder is the biggest size of LECA with 100–500 mm size and 500 kg/m3 density.

Some characteristics of LECA are lightness, thermal insulation by low thermal conductivity coefficient (as low as 0.097 W/mK[1]), soundproofing by high acoustic insulation, moisture impermeability, being incompressible under permanent pressure and gravity loads, not decomposing in severe conditions, fire resistance, a pH of nearly 7, freezing and melting resistance, easy movement and transportation, lightweight backfill and finishing, reduction of construction dead load and earthquake lateral load, being perfect sweet soil for plants, and as a material for drainage and filtration.

Uses[edit]

Common uses are in concrete blocks, concrete slabs, geotechnical fillings, lightweight concrete, water treatment, hydroponics, aquaponics and hydroculture.

LECA can be easily used for plant-growing substrate.

LECA is a versatile material and is utilized in an increasing number of applications. In the construction industry, it is used extensively in the production of lightweight concrete, blocks and precast or incast structural elements (panels, partitions, bricks and light tiles). LECA used in structural backfill against foundations, retaining walls, bridge abutments etc., in addition, it can reduce earth pressure by 75% compared with conventional materials, and also increases ground stability while reducing settlement and land deformation. LECA can drain the surface water and groundwater to control groundwater pressure. LECA grout can be used for flooring (finishing) and roofing with thermal and sound insulation.

LECA is also used in water treatment facilities for the filtration and purification of municipal wastewater and drinking water as well as in other filtering processes, including those for dealing with industrial wastewater and fish farms.

LECA has many uses in horticulture, agriculture, and landscapes. Using LECA helps to alter soil mechanics. Using LECA provides many benefits across horticulture. It's commonly used as a growing medium in hydroponics systems since blended with other growing mediums such as soil and peat, it can improve compaction resistance, and drainage, retain water during periods of drought, insulate roots during frost, and provide roots with increased oxygen levels promoting very vigorous growth. LECA can be mixed with heavy soil to improve its aeration and drainage.

In the horticultural practice of hydroponics, LECA is a favored medium for growing plants within; the round shape provides excellent aeration at the root level, while the LECA clay pieces themselves become saturated with water and plant food, thus giving the roots a consistent supply of both. So-called semi-hydroponics or passive hydroponics (also called "semi-hydro") is a popular, simplified method of hydroponics, most commonly utilized for houseplants and tropical species. A plant is potted in solely LECA (preferably in a container with multiple air holes on the sides and bottom, like an orchid pot) and placed into a second, sealed container, in which a "nutrient reservoir" of water and plant food is maintained. Only the very bottom of the pot needs to touch this reservoir; the LECA, being porous by nature, gradually wicks moisture and nutrients up and becomes saturated, allowing the plant to feed and drink at a consistent rate.

One of the main differences between semi-hydroponics and more advanced hydroponics is the nutrients and water--whether they are consistently being delivered or whether they are sitting beneath each plant, gradually needing to be replaced before evaporating or becoming stagnant. Other differences are elements such as the facilities, the equipment, the types of plants being grown and why, and the consistency of water and nutrient delivery. Hydroponics is often favored by farmers and growers of edible crops on a larger scale. LECA can be used successfully in these settings. Semi-hydroponics is much more popular with individual plant collectors, bearing in mind the need to flush out and replenish the plants' nutrient reservoirs periodically (approx. every 7-10 days); more advanced systems provide constantly flowing, filtered, nutrient-enhanced water over the plants' roots, which typically drains into another reservoir for recycling and reusing.

See also[edit]

References[edit]

  1. ^ "Geotechnical Fill". Norlite Lightweight Aggregate. Archived from the original on 2015-05-24. Retrieved 2015-05-24.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Expanded_clay_aggregate&oldid=1222492122"

Categories: 
Ceramic materials
Soil-based building materials
Natural materials
Sediments
Phyllosilicates
Earthworks (engineering)
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles needing additional references from March 2015
All articles needing additional references
 



This page was last edited on 6 May 2024, at 07:29 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki