Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 F-crystals and F-isocrystals over perfect fields  





2 DieudonnéManin classification theorem  





3 The Newton polygon of an F-isocrystal  





4 The Hodge polygon of an F-crystal  





5 Isocrystals over more general schemes  





6 References  














F-crystal







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inalgebraic geometry, F-crystals are objects introduced by Mazur (1972) that capture some of the structure of crystalline cohomology groups. The letter F stands for Frobenius, indicating that F-crystals have an action of Frobenius on them. F-isocrystals are crystals "up to isogeny".

F-crystals and F-isocrystals over perfect fields[edit]

Suppose that k is a perfect field, with ring of Witt vectors W and let K be the quotient field of W, with Frobenius automorphism σ.

Over the field k, an F-crystal is a free module M of finite rank over the ring W of Witt vectors of k, together with a σ-linear injective endomorphism of M. An F-isocrystal is defined in the same way, except that M is a module for the quotient field KofW rather than W.

Dieudonné–Manin classification theorem[edit]

The Dieudonné–Manin classification theorem was proved by Dieudonné (1955) and Manin (1963). It describes the structure of F-isocrystals over an algebraically closed field k. The category of such F-isocrystals is abelian and semisimple, so every F-isocrystal is a direct sum of simple F-isocrystals. The simple F-isocrystals are the modules Es/r where r and s are coprime integers with r>0. The F-isocrystal Es/r has a basis over K of the form v, Fv, F2v,...,Fr−1v for some element v, and Frv = psv. The rational number s/r is called the slope of the F-isocrystal.

Over a non-algebraically closed field k the simple F-isocrystals are harder to describe explicitly, but an F-isocrystal can still be written as a direct sum of subcrystals that are isoclinic, where an F-crystal is called isoclinic if over the algebraic closure of k it is a sum of F-isocrystals of the same slope.

The Newton polygon of an F-isocrystal[edit]

The Newton polygon of an F-isocrystal encodes the dimensions of the pieces of given slope. If the F-isocrystal is a sum of isoclinic pieces with slopes s1 < s2 < ... and dimensions (as Witt ring modules) d1, d2,... then the Newton polygon has vertices (0,0), (x1, y1), (x2, y2),... where the nth line segment joining the vertices has slope sn = (ynyn−1)/(xnxn−1) and projection onto the x-axis of length dn = xn − xn−1.

The Hodge polygon of an F-crystal[edit]

The Hodge polygon of an F-crystal M encodes the structure of M/FM considered as a module over the Witt ring. More precisely since the Witt ring is a principal ideal domain, the module M/FM can be written as a direct sum of indecomposable modules of lengths n1n2 ≤ ... and the Hodge polygon then has vertices (0,0), (1,n1), (2,n1+ n2), ...

While the Newton polygon of an F-crystal depends only on the corresponding isocrystal, it is possible for two F-crystals corresponding to the same F-isocrystal to have different Hodge polygons. The Hodge polygon has edges with integer slopes, while the Newton polygon has edges with rational slopes.

Isocrystals over more general schemes[edit]

Suppose that A is a complete discrete valuation ringofcharacteristic 0 with quotient field k of characteristic p>0 and perfect. An affine enlargement of a scheme X0 over k consists of a torsion-free A-algebra B and an ideal IofB such that B is complete in the I topology and the image of I is nilpotent in B/pB, together with a morphism from Spec(B/I) to X0. A convergent isocrystal over a k-scheme X0 consists of a module over BQ for every affine enlargement B that is compatible with maps between affine enlargements (Faltings 1990).

AnF-isocrystal (short for Frobenius isocrystal) is an isocrystal together with an isomorphism to its pullback under a Frobenius morphism.

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=F-crystal&oldid=1215373924"

Category: 
Algebraic geometry
 



This page was last edited on 24 March 2024, at 19:29 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki