Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Finitary argument  





2 History  





3 Notes  





4 External links  














Finitary






Bahasa Indonesia

Tagalog
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics and logic, an operationisfinitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values.

In standard mathematics, an operation is finitary by definition. Therefore, these terms are usually only used in the context of infinitary logic.

Finitary argument[edit]

Afinitary argument is one which can be translated into a finite set of symbolic propositions starting from a finite[1] set of axioms. In other words, it is a proof (including all assumptions) that can be written on a large enough sheet of paper.

By contrast, infinitary logic studies logics that allow infinitely long statements and proofs. In such a logic, one can regard the existential quantifier, for instance, as derived from an infinitary disjunction.

History[edit]

Logicians in the early 20th century aimed to solve the problem of foundations, such as, "What is the true base of mathematics?" The program was to be able to rewrite all mathematics using an entirely syntactical language without semantics. In the words of David Hilbert (referring to geometry), "it does not matter if we call the things chairs, tables and beer mugsorpoints, lines and planes."

The stress on finiteness came from the idea that human mathematical thought is based on a finite number of principles [citation needed] and all the reasonings follow essentially one rule: the modus ponens. The project was to fix a finite number of symbols (essentially the numerals 1, 2, 3, ... the letters of alphabet and some special symbols like "+", "⇒", "(", ")", etc.), give a finite number of propositions expressed in those symbols, which were to be taken as "foundations" (the axioms), and some rules of inference which would model the way humans make conclusions. From these, regardless of the semantic interpretation of the symbols the remaining theorems should follow formally using only the stated rules (which make mathematics look like a game with symbols more than a science) without the need to rely on ingenuity. The hope was to prove that from these axioms and rules all the theorems of mathematics could be deduced. That aim is known as logicism.

Notes[edit]

  1. ^ The number of axioms referenced in the argument will necessarily be finite since the proof is finite, but the number of axioms from which these are chosen is infinite when the system has axiom schemes, e.g. the axiom schemes of propositional calculus.

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Finitary&oldid=1225420656"

Category: 
Mathematical logic
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles needing additional references from April 2012
All articles needing additional references
All articles with unsourced statements
Articles with unsourced statements from April 2013
 



This page was last edited on 24 May 2024, at 10:20 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki