Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proof  





2 Improvements  





3 See also  





4 Notes  





5 References  














Fischer's inequality







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, Fischer's inequality gives an upper bound for the determinant of a positive-semidefinite matrix whose entries are complex numbers in terms of the determinants of its principal diagonal blocks. Suppose A, C are respectively p×p, q×q positive-semidefinite complex matrices and B is a p×q complex matrix. Let

so that M is a (p+q)×(p+q) matrix.

Then Fischer's inequality states that

IfM is positive-definite, equality is achieved in Fischer's inequality if and only if all the entries of B are 0. Inductively one may conclude that a similar inequality holds for a block decomposition of M with multiple principal diagonal blocks. Considering 1×1 blocks, a corollary is Hadamard's inequality. On the other hand, Fischer's inequality can also be proved by using Hadamard's inequality, see the proof of Theorem 7.8.5 in Horn and Johnson's Matrix Analysis.

Proof[edit]

Assume that A and C are positive-definite. We have and are positive-definite. Let

We note that

Applying the AM-GM inequality to the eigenvalues of , we see

By multiplicativity of determinant, we have

In this case, equality holds if and only if M = D that is, all entries of B are 0.

For , as and are positive-definite, we have

Taking the limit as proves the inequality. From the inequality we note that if M is invertible, then both A and C are invertible and we get the desired equality condition.

Improvements[edit]

IfM can be partitioned in square blocks Mij, then the following inequality by Thompson is valid:[1]

where [det(Mij)] is the matrix whose (i,j) entry is det(Mij).

In particular, if the block matrices B and C are also square matrices, then the following inequality by Everett is valid:[2]

Thompson's inequality can also be generalized by an inequality in terms of the coefficients of the characteristic polynomial of the block matrices. Expressing the characteristic polynomial of the matrix Aas

and supposing that the blocks Mij are mxm matrices, the following inequality by Lin and Zhang is valid:[3]

Note that if r = m, then this inequality is identical to Thompson's inequality.

See also[edit]

Notes[edit]

  1. ^ Thompson, R. C. (1961). "A determinantal inequality for positive definite matrices". Canadian Mathematical Bulletin. 4: 57–62. doi:10.4153/cmb-1961-010-9.
  • ^ Everitt, W. N. (1958). "A note on positive definite matrices". Glasgow Mathematical Journal. 3 (4): 173–175. doi:10.1017/S2040618500033670. ISSN 2051-2104.
  • ^ Lin, Minghua; Zhang, Pingping (2017). "Unifying a result of Thompson and a result of Fiedler and Markham on block positive definite matrices". Linear Algebra and Its Applications. 533: 380–385. doi:10.1016/j.laa.2017.07.032.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fischer%27s_inequality&oldid=1214353448"

    Categories: 
    Inequalities
    Determinants
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 18 March 2024, at 12:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki