Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Attracting fixed points  



2.1  Banach fixed-point theorem  





2.2  Attractors  







3 Iterative methods  



3.1  Iterative method examples  





3.2  Convergence acceleration  







4 Chaos game  





5 See also  





6 References  





7 Further reading  





8 External links  














Fixed-point iteration






العربية
Deutsch
Español
Italiano
Norsk bokmål
Português
Русский
Slovenščina
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Innumerical analysis, fixed-point iteration is a method of computing fixed points of a function.

More specifically, given a function defined on the real numbers with real values and given a point in the domainof, the fixed-point iteration is

which gives rise to the sequence ofiterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e.,

More generally, the function can be defined on any metric space with values in that same space.

Examples[edit]

The fixed-point iteration xn+1 = sin xn with initial value x0 = 2 converges to 0. This example does not satisfy the assumptions of the Banach fixed-point theorem and so its speed of convergence is very slow.

Attracting fixed points[edit]

The fixed point iteration xn+1 = cos xn with initial value x1 = −1.

Anattracting fixed point of a function f is a fixed point xfixoff with a neighborhood U of "close enough" points around xfix such that for any value of xinU, the fixed-point iteration sequence

is contained in U and convergestoxfix. The basin of attraction of xfix is the largest such neighborhood U.[1]

The natural cosine function ("natural" means in radians, not degrees or other units) has exactly one fixed point, and that fixed point is attracting. In this case, "close enough" is not a stringent criterion at all—to demonstrate this, start with any real number and repeatedly press the cos key on a calculator (checking first that the calculator is in "radians" mode). It eventually converges to the Dottie number (about 0.739085133), which is a fixed point. That is where the graph of the cosine function intersects the line .[2]

Not all fixed points are attracting. For example, 0 is a fixed point of the function f(x) = 2x, but iteration of this function for any value other than zero rapidly diverges. We say that the fixed point of is repelling.

An attracting fixed point is said to be a stable fixed point if it is also Lyapunov stable.

A fixed point is said to be a neutrally stable fixed point if it is Lyapunov stable but not attracting. The center of a linear homogeneous differential equation of the second order is an example of a neutrally stable fixed point.

Multiple attracting points can be collected in an attracting fixed set.

Banach fixed-point theorem[edit]

The Banach fixed-point theorem gives a sufficient condition for the existence of attracting fixed points. A contraction mapping function defined on a complete metric space has precisely one fixed point, and the fixed-point iteration is attracted towards that fixed point for any initial guess in the domain of the function. Common special cases are that (1) is defined on the real line with real values and is Lipschitz continuous with Lipschitz constant , and (2) the function f is continuously differentiable in an open neighbourhood of a fixed point xfix, and .

Although there are other fixed-point theorems, this one in particular is very useful because not all fixed-points are attractive. When constructing a fixed-point iteration, it is very important to make sure it converges to the fixed point. We can usually use the Banach fixed-point theorem to show that the fixed point is attractive.

Attractors[edit]

Attracting fixed points are a special case of a wider mathematical concept of attractors. Fixed-point iterations are a discrete dynamical system on one variable. Bifurcation theory studies dynamical systems and classifies various behaviors such as attracting fixed points, periodic orbits, or strange attractors. An example system is the logistic map.

Iterative methods[edit]

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones. Convergent fixed-point iterations are mathematically rigorous formalizations of iterative methods.

Iterative method examples[edit]

Convergence acceleration[edit]

The speed of convergence of the iteration sequence can be increased by using a convergence acceleration method such as Anderson acceleration and Aitken's delta-squared process. The application of Aitken's method to fixed-point iteration is known as Steffensen's method, and it can be shown that Steffensen's method yields a rate of convergence that is at least quadratic.

Chaos game[edit]

Sierpinski triangle created using IFS, selecting all members at each iteration

The term chaos game refers to a method of generating the fixed point of any iterated function system (IFS). Starting with any point x0, successive iterations are formed as xk+1 = fr(xk), where fr is a member of the given IFS randomly selected for each iteration. Hence the chaos game is a randomized fixed-point iteration. The chaos game allows plotting the general shape of a fractal such as the Sierpinski triangle by repeating the iterative process a large number of times. More mathematically, the iterations converge to the fixed point of the IFS. Whenever x0 belongs to the attractor of the IFS, all iterations xk stay inside the attractor and, with probability 1, form a dense set in the latter.

See also[edit]

  • Cobweb plot
  • Markov chain
  • Infinite compositions of analytic functions
  • Rate of convergence
  • References[edit]

    1. ^ One may also consider certain iterations A-stable if the iterates stay bounded for a long time, which is beyond the scope of this article.
    1. ^ Rassias, Themistocles M.; Pardalos, Panos M. (17 September 2014). Mathematics Without Boundaries: Surveys in Pure Mathematics. Springer. ISBN 978-1-4939-1106-6.
  • ^ Weisstein, Eric W. "Dottie Number". Wolfram MathWorld. Wolfram Research, Inc. Retrieved 23 July 2016.
  • ^ M A Kumar (2010), Solve Implicit Equations (Colebrook) Within Worksheet, Createspace, ISBN 1-4528-1619-0
  • ^ Brkic, Dejan (2017) Solution of the Implicit Colebrook Equation for Flow Friction Using Excel, Spreadsheets in Education (eJSiE): Vol. 10: Iss. 2, Article 2. Available at: https://sie.scholasticahq.com/article/4663-solution-of-the-implicit-colebrook-equation-for-flow-friction-using-excel
  • ^ Bellman, R. (1957). Dynamic programming, Princeton University Press.
  • ^ Sniedovich, M. (2010). Dynamic Programming: Foundations and Principles, Taylor & Francis.
  • ^ Onozaki, Tamotsu (2018). "Chapter 2. One-Dimensional Nonlinear Cobweb Model". Nonlinearity, Bounded Rationality, and Heterogeneity: Some Aspects of Market Economies as Complex Systems. Springer. ISBN 978-4-431-54971-0.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Fixed-point_iteration&oldid=1189645416"

    Categories: 
    Root-finding algorithms
    Iterative methods
    Fixed-point theorems
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from May 2010
    All articles needing additional references
     



    This page was last edited on 13 December 2023, at 03:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki