Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Aircraft  





2 Spacecraft and satellites  





3 See also  





4 References  














Flight dynamics






العربية
فارسی

Русский
Simple English
ி
Türkçe
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikiversity
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Flight dynamicsinaviation and spacecraft, is the study of the performance, stability, and control of vehicles flying through the air or in outer space.[1] It is concerned with how forces acting on the vehicle determine its velocity and attitude with respect to time.

For a fixed-wing aircraft, its changing orientation with respect to the local air flow is represented by two critical angles, the angle of attack of the wing ("alpha") and the angle of attack of the vertical tail, known as the sideslip angle ("beta"). A sideslip angle will arise if an aircraft yaws about its centre of gravity and if the aircraft sideslips bodily, i.e. the centre of gravity moves sideways.[2] These angles are important because they are the principal source of changes in the aerodynamic forces and moments applied to the aircraft.

Spacecraft flight dynamics involve three main forces: propulsive (rocket engine), gravitational, and atmospheric resistance.[3] Propulsive force and atmospheric resistance have significantly less influence over a given spacecraft compared to gravitational forces.

Aircraft[edit]

Axes to control the attitude of a plane

Flight dynamics is the science of air-vehicle orientation and control in three dimensions. The critical flight dynamics parameters are the angles of rotation with respect to the three aircraft's principal axes about its center of gravity, known as roll, pitch and yaw.

Aircraft engineers develop control systems for a vehicle's orientation (attitude) about its center of gravity. The control systems include actuators, which exert forces in various directions, and generate rotational forces or moments about the center of gravity of the aircraft, and thus rotate the aircraft in pitch, roll, or yaw. For example, a pitching moment is a vertical force applied at a distance forward or aft from the center of gravity of the aircraft, causing the aircraft to pitch up or down.

Roll, pitch and yaw refer, in this context, to rotations about the respective axes starting from a defined equilibrium state. The equilibrium roll angle is known as wings level or zero bank angle, equivalent to a level heeling angle on a ship. Yaw is known as "heading".

Afixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight. An aircraft is streamlined from nose to tail to reduce drag making it advantageous to keep the sideslip angle near zero, though aircraft are deliberately "side-slipped" when landing in a cross-wind, as explained in slip (aerodynamics).

Spacecraft and satellites[edit]

Propulsive, aerodynamic, and gravitational force vectors acting on a space vehicle during launch

The forces acting on space vehicles are of three types: propulsive force (usually provided by the vehicle's engine thrust); gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag (when flying in the atmosphere of the Earth or another body, such as Mars or Venus). The vehicle's attitude must be controlled during powered atmospheric flight because of its effect on the aerodynamic and propulsive forces.[3] There are other reasons, unrelated to flight dynamics, for controlling the vehicle's attitude in non-powered flight (e.g., thermal control, solar power generation, communications, or astronomical observation).

The flight dynamics of spacecraft differ from those of aircraft in that the aerodynamic forces are of very small, or vanishingly small effect for most of the vehicle's flight, and cannot be used for attitude control during that time. Also, most of a spacecraft's flight time is usually unpowered, leaving gravity as the dominant force.

See also[edit]

References[edit]

  1. ^ Stengel, Robert F. (2010), Aircraft Flight Dynamics (MAE 331) course summary, retrieved November 16, 2011
  • ^ Flightwise - Volume 2 - Aircraft Stability And Control, Chris Carpenter 1997, Airlife Publishing Ltd., ISBN 1 85310 870 7, p.145
  • ^ a b Depending on the vehicle's mass distribution, the effects of gravitational force may also be affected by attitude (and vice versa),[citation needed] but to a much lesser extent.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Flight_dynamics&oldid=1226831892"

    Categories: 
    Aerospace engineering
    Aerodynamics
    Spaceflight concepts
    Hidden categories: 
    All articles with unsourced statements
    Articles with unsourced statements from February 2022
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from June 2023
    All articles needing additional references
    Articles to be expanded from May 2020
    Pages displaying short descriptions of redirect targets via Module:Annotated link
     



    This page was last edited on 2 June 2024, at 03:03 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki