Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Fluvio-thermal erosion







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ingeomorphology fluvio-thermal erosion is the combined mechanical and thermal erosion of an unfrozen river or stream against ice-rich soils and sediments. The erosional process includes the thawing of ice sediments by a strong water flow and once the surface is unfrozen, mechanical erosion occurs only if hydraulic forces are powerful enough to incise the riverbank material.[1] This kind of erosion sometimes causes the banks to collapse into the river, and when this occurs collapses are commonly controlled by ice wedges.[2] Rivers where this process has been observed include the Lena, the Colville River delta, and the Yukon River.[2]

The Yakutia region in Central Siberia, where the Lena River is located, is an exceptional point of interest to study this type of erosion based on its record low temperatures and extreme thickness of permafrost. During the winter when water level is low, a thick sheet of ice forms on top of the Lena River, that is sometimes as much as 2 m thick. Seasonal floods caused by rapid snowmelt and irregular storms then break the ice apart in the summer, exposing the banks of the river to the power of erosion. There are two stages to this process: the first is the breakup of the ice and the second is the flooding. Over the course of just a few days in May or June, water discharge can increase by 10x its velocity. The force of the water causes the ice sitting on top of the river to break apart, and these broken pieces are thrust up onto the riverbanks, sometimes forming an ice barrier that as high as 10m tall that will protect the banks from erosion for a short time.[3] However, as the flood continues, the warmth and mechanical energy from the water melts the ice barrier, giving way for the fluvio-thermal erosion of the frozen riverbanks. For the Lena, the banks are observed to retreat approximately 40 m per year.

Based on lab models carried out in a cold room, high water temperature, ice temperature, and discharge are shown to be the main contributors of thermal erosion, whereas high ice content in the soil is shown to slow down the thermal erosion process. Melting of the ice within a porous material reduces the strength of the material, rendering it easily breakable and removable.[4] During the melting period of a periglacial river in the summer, due to a relatively high water discharge, the unfrozen sediments are weathered away. In conclusion, water discharge in permanent contact with permafrost banks creates a combination of thermal and mechanical erosion.

References[edit]

Notes
  1. ^ Dupeyrat, L (2011). "Effects of Ice Content on the Thermal Erosion of Permafrost: Implications for Coastal and Fluvial Erosion". Permafrost and Periglacial Processes. 22 (2): 179–187. Bibcode:2011PPPr...22..179D. doi:10.1002/ppp.722. S2CID 130602564.
  • ^ a b French, Hugh M. (2007). The Periglacial Environment (3rd ed.). John Wiley & Sons Ltd. p. 260. ISBN 978-0-470-86588-0.
  • ^ Costard, Francois (2014). "An Assessment of the Erosion Potential of the Fluvial Thermal Process during Ice Breakups of the Lena River (Siberia)". Permafrost and Periglacial Processes. 25 (3): 162–171. Bibcode:2014PPPr...25..162C. doi:10.1002/ppp.1812. S2CID 130195791.
  • ^ Randriamazaoro, R (2007). "Fluvial thermal erosion: heat balance integral method". Earth Surface Processes and Landforms. 32 (12): 1828–1840. Bibcode:2007ESPL...32.1828R. doi:10.1002/esp.1489. S2CID 128500502.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Fluvio-thermal_erosion&oldid=1227989038"

    Categories: 
    Erosion
    Soil erosion
    Hydrology
    Physical geography
    Permafrost
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 8 June 2024, at 21:43 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki