Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Procedure  





2 Formal derivative  





3 Derivation  





4 Erasures  





5 See also  





6 References  














Forney algorithm






Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incoding theory, the Forney algorithm (orForney's algorithm) calculates the error values at known error locations. It is used as one of the steps in decoding BCH codes and Reed–Solomon codes (a subclass of BCH codes). George David Forney Jr. developed the algorithm.[1]

Procedure

[edit]
Need to introduce terminology and the setup...

Code words look like polynomials. By design, the generator polynomial has consecutive roots αc, αc+1, ..., αc+d−2.

Syndromes

Error location polynomial[2]

The zeros of Λ(x) are X1−1, ..., Xν−1. The zeros are the reciprocals of the error locations .

Once the error locations are known, the next step is to determine the error values at those locations. The error values are then used to correct the received values at those locations to recover the original codeword.

In the more general case, the error weights ej can be determined by solving the linear system

However, there is a more efficient method known as the Forney algorithm, which is based on Lagrange interpolation. First calculate the error evaluator polynomial[3]

Where S(x) is the partial syndrome polynomial:[4]

Then evaluate the error values:[3]

The value c is often called the "first consecutive root" or "fcr". Some codes select c = 1, so the expression simplifies to:

Formal derivative

[edit]

Λ'(x) is the formal derivative of the error locator polynomial Λ(x):[3]

In the above expression, note that i is an integer, and λi would be an element of the finite field. The operator ⋅ represents ordinary multiplication (repeated addition in the finite field) which is the same as the finite field's multiplication operator, i.e.

For instance, in characteristic 2, according as i is even or odd.

Derivation

[edit]

Lagrange interpolation

Gill (n.d., pp. 52–54) gives a derivation of the Forney algorithm.

Erasures

[edit]

Define the erasure locator polynomial

Where the erasure locations are given by ji. Apply the procedure described above, substituting Γ for Λ.

If both errors and erasures are present, use the error-and-erasure locator polynomial

See also

[edit]

References

[edit]
  • ^ Gill n.d., p. 24
  • ^ a b c Gill n.d., p. 47
  • ^ Gill (n.d., p. 48)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Forney_algorithm&oldid=1223153625"

    Categories: 
    Error detection and correction
    Coding theory
     



    This page was last edited on 10 May 2024, at 07:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki