Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Igneous rocks  





2 Sedimentary rocks  





3 See also  





4 References  














Fractional crystallization (geology)






العربية
Azərbaycanca
Deutsch
Eesti
Español
Français
Bahasa Indonesia
עברית
Nederlands
Português
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Crystallization
Fundamentals
Concepts
Methods and technology
  • t
  • e
  • Schematic diagrams showing the principles behind fractional crystallisation in a magma. While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.

    Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation.[1] Fractional crystallization is also important in the formation of sedimentary evaporite rocks or simply fractional crystallization is the removal of early formed crystals from an Original homogeneous magma so that the crystals are prevented from further reaction with the residual melt.

    Igneous rocks[edit]

    Fractional crystallization is the removal and segregation from a melt of mineral precipitates; except in special cases, removal of the crystals changes the composition of the magma.[2] In essence, fractional crystallization is the removal of early formed crystals from an originally homogeneous magma (for example, by gravity settling) so that these crystals are prevented from further reaction with the residual melt.[3] The composition of the remaining melt becomes relatively depleted in some components and enriched in others, resulting in the precipitation of a sequence of different minerals.[4]

    Fractional crystallization in silicate melts (magmas) is complex compared to crystallization in chemical systems at constant pressure and composition, because changes in pressure and composition can have dramatic effects on magma evolution. Addition and loss of water, carbon dioxide, and oxygen are among the compositional changes that must be considered.[5] For example, the partial pressure (fugacity) of water in silicate melts can be of prime importance, as in near-solidus crystallization of magmas of granite composition.[6][7] The crystallization sequence of oxide minerals such as magnetite and ulvospinel is sensitive to the oxygen fugacity of melts,[8] and separation of the oxide phases can be an important control of silica concentration in the evolving magma, and may be important in andesite genesis.[9][10]

    Experiments have provided many examples of the complexities that control which mineral is crystallized first as the melt cools down past the liquidus.

    One example concerns crystallization of melts that form mafic and ultramafic rocks. MgO and SiO2 concentrations in melts are among the variables that determine whether forsterite olivineorenstatite pyroxene is precipitated,[11] but the water content and pressure are also important. In some compositions, at high pressures without water crystallization of enstatite is favored, but in the presence of water at high pressures, olivine is favored.[12]

    Granitic magmas provide additional examples of how melts of generally similar composition and temperature, but at different pressure, may crystallize different minerals. Pressure determines the maximum water content of a magma of granite composition. High-temperature fractional crystallization of relatively water-poor granite magmas may produce single-alkali-feldspar granite, and lower-temperature crystallization of relatively water-rich magma may produce two-feldspar granite.[13]

    During the process of fractional crystallization, melts become enriched in incompatible elements.[14] Hence, knowledge of the crystallization sequence is critical in understanding how melt compositions evolve. Textures of rocks provide insights, as documented in the early 1900s by Bowen's reaction series.[15] An example of such texture, related to fractioned crystallization, is intergranular (also known as intercumulus) textures that develop wherever a mineral crystallizes later than the surrounding matrix, hence filling the left-over interstitial space. Various oxides of chromium, iron and titanium show such textures, such as intergranular chromite in a siliceous matrix.[citation needed] Experimentally-determined phase diagrams for simple mixtures provide insights into general principles.[16][17] Numerical calculations with special software have become increasingly able to simulate natural processes accurately.[18][19]

    Sedimentary rocks[edit]

    Fractional crystallization is important in the formation of sedimentary evaporite rocks.[20]

    See also[edit]

    References[edit]

    1. ^ Petrology The Study of Igneous...Rocks, Loren A. Raymond, 1995, McGraw-Hill, p. 91
  • ^ Wilson B.M. (1989). Igneous Petrogenesis A Global Tectonic Approach. Springer. p. 82. ISBN 9780412533105.
  • ^ Emeleus, C. H.; Troll, V. R. (August 2014). "The Rum Igneous Centre, Scotland". Mineralogical Magazine. 78 (4): 805–839. Bibcode:2014MinM...78..805E. doi:10.1180/minmag.2014.078.4.04. ISSN 0026-461X.
  • ^ Petrology The Study of Igneous...Rocks, Loren A. Raymond, 1995, McGraw-Hill, p. 65
  • ^ Lange, R.L.; Carmichael, Ian S.E. (1990). "Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility". Reviews in Mineralogy and Geochemistry. 24 (1): 25–64. Retrieved 8 November 2020.
  • ^ Huang, W. L.; Wyllie, P. J. (March 1973). "Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments". Contributions to Mineralogy and Petrology. 42 (1): 1–14. Bibcode:1973CoMP...42....1H. doi:10.1007/BF00521643. S2CID 129917491.
  • ^ Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 604–612. ISBN 9780521880060.
  • ^ McBirney, Alexander R. (1984). Igneous petrology. San Francisco, Calif.: Freeman, Cooper. pp. 124–127. ISBN 0877353239.
  • ^ Juster, Thomas C.; Grove, Timothy L.; Perfit, Michael R. (1989). "Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W". Journal of Geophysical Research. 94 (B7): 9251. Bibcode:1989JGR....94.9251J. doi:10.1029/JB094iB07p09251.
  • ^ Philpotts & Ague 2009, pp. 609–611.
  • ^ Philpotts & Ague 2009, pp. 201–205.
  • ^ Kushiro, Ikuo (1969). "The system forsterite-diopside-silica with and without water at high pressures" (PDF). American Journal of Science. 267.A: 269–294. Retrieved 8 November 2020.
  • ^ McBirney 1984, pp. 347–348.
  • ^ Klein, E.M. (2005). "Geochemistry of the Igneous Oceanic Crust". In Rudnick, R. (ed.). The Crust — Treatise on Geochemistry Volume 3. Amsterdam: Elsevier. p. 442. ISBN 0-08-044847-X.
  • ^ Bowen, N.L. (1956). The Evolution of the Igneous Rocks. Canada: Dover. pp. 60–62.
  • ^ McBirney 1984, pp. 68–102.
  • ^ Philpotts & Ague 2009, pp. 194–240.
  • ^ Philpotts & Ague 2009, pp. 239–240.
  • ^ Ghiorso, Mark S.; Hirschmann, Marc M.; Reiners, Peter W.; Kress, Victor C. (May 2002). "The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa: pMELTS, A REVISION OF MELTS". Geochemistry, Geophysics, Geosystems. 3 (5): 1–35. doi:10.1029/2001GC000217.
  • ^ Raab, M.; Spiro, B. (April 1991). "Sulfur isotopic variations during seawater evaporation with fractional crystallization". Chemical Geology: Isotope Geoscience Section. 86 (4): 323–333. Bibcode:1991CGIGS..86..323R. doi:10.1016/0168-9622(91)90014-N.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Fractional_crystallization_(geology)&oldid=1217222649"

    Categories: 
    Igneous rocks
    Igneous petrology
    Hidden categories: 
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from November 2020
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 4 April 2024, at 15:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki