Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Explanation  





2 References  














Full configuration interaction






Italiano

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Full configuration interaction[1] (orfull CI) is a linear variational approach which provides numerically exact solutions (within the infinitely flexible complete basis set) to the electronic time-independent, non-relativistic Schrödinger equation.[2]

Explanation[edit]

It is a special case of the configuration interaction method in which all Slater determinants (orconfiguration state functions, CSFs) of the proper symmetry are included in the variational procedure (i.e., all Slater determinants obtained by exciting all possible electrons to all possible virtual orbitals, orbitals which are unoccupied in the electronic ground state configuration). This method is equivalent to computing the eigenvalues of the electronic molecular Hamiltonian within the basis set of the above-mentioned configuration state functions.[citation needed]

In a minimal basis set a full CI computation is very easy. But in larger basis sets this is usually just a limiting case which is not often attained. This is because exact solution of the full CI determinant is NP-complete[citation needed], so the existence of a polynomial time algorithm is unlikely. The Davidson correction is a simple correction which allows one to estimate the value of the full CI energy from a limited configuration interaction expansion result.[citation needed]

Because the number of determinants required in the full CI expansion grows factorially with the number of electrons and orbitals, full CI is only possible for atoms or very small molecules with about a dozen or fewer electrons. Full CI problems including several million up to a few billion determinants are possible using current algorithms. Because full CI results are exact within the space spanned by the orbital basis set, they are invaluable in benchmarking approximate quantum chemical methods.[3] This is particularly important in cases such as bond-breaking reactions, diradicals, and first-row transition metals, where electronic near-degeneracies can invalidate the approximations inherent in many standard methods such as Hartree–Fock theory, multireference configuration interaction, finite-order Møller–Plesset perturbation theory, and coupled cluster theory.[citation needed]

Although fewer N-electron functions are required if one employs a basis of spin-adapted functions (Ŝ2 eigenfunctions), the most efficient full CI programs employ a Slater determinant basis because this allows for the very rapid evaluation of coupling coefficients using string-based techniques advanced by Nicholas C. Handy in 1980. In the 1980s and 1990s, full CI programs were adapted to provide arbitrary-order Møller–Plesset perturbation theory wave functions, and in the 2000s they have been adapted to provide coupled cluster wave functions to arbitrary orders, greatly simplifying the task of programming these complex methods.[citation needed]

References[edit]

  1. ^ Ross, I. G. (1952). "Calculations of the energy levels of acetylene by the method of antisymmetric molecular orbitals, including σ-π interaction". Transactions of the Faraday Society. 48. The Royal Society of Chemistry: 973–991. doi:10.1039/TF9524800973.
  • ^ Foresman, James B.; Æleen Frisch (1996). Exploring Chemistry with Electronic Structure Methods (2nd ed.). Pittsburgh, PA: Gaussian Inc. pp. 266, 278–283. ISBN 0-9636769-3-8.
  • ^ Szabo, Attila; Neil S. Ostlund (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publications, Inc. pp. 350–353. ISBN 0-486-69186-1.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Full_configuration_interaction&oldid=1110270327"

    Categories: 
    Quantum chemistry
    Theoretical chemistry
    Computational chemistry
    Hidden categories: 
    All articles with unsourced statements
    Articles with unsourced statements from April 2010
    Articles with unsourced statements from January 2010
     



    This page was last edited on 14 September 2022, at 15:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki