Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Experimental setup  





2 GBAR collaboration  





3 See also  





4 References  





5 External links  














GBAR experiment







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Antiproton decelerator
(AD)
ELENAExtra low energy antiproton ring – further decelerates antiprotons coming from AD
AD experiments
ATHENAAD-1 Antihydrogen production and precision experiments
ATRAPAD-2 Cold antihydrogen for precise laser spectroscopy
ASACUSAAD-3 Atomic spectroscopy and collisions with antiprotons
ACEAD-4 Antiproton cell experiment
ALPHAAD-5 Antihydrogen laser physics apparatus
AEgISAD-6 Antihydrogen experiment gravity interferometry spectroscopy
GBARAD-7 Gravitational behaviour of anti-hydrogen at rest
BASEAD-8 Baryon antibaryon symmetry experiment
PUMAAD-9 Antiproton unstable matter annihilation
CERN Antimatter factory – GBAR (Gravitational Behaviour of Anti hydrogen at Rest) experiment

GBAR (Gravitational Behaviour of Anti hydrogen at Rest), AD-7 experiment, is a multinational collaboration at the Antiproton DeceleratorofCERN.

The GBAR project aims to measure the free-fall acceleration of ultra-cold neutral anti-hydrogen atoms in the terrestrial gravitational field. By measuring the free fall acceleration of anti-hydrogen and comparing it with acceleration of normal hydrogen, GBAR is testing the equivalence principle proposed by Albert Einstein. The equivalence principle says that the gravitational force on a particle is independent of its internal structure and composition.[1]

Experimental setup[edit]

The experiment consists of preparing anti-hydrogen ions (Hbar+positronium- one antiproton and two positrons) and sympathetically cooling them with Be+ ions to less than 10 μK. The ultra-cold ions are then photoionized just above the threshold using a laser pulse; this removes the outermost positron and forms neutral anti-hydrogen. The free-fall time of these atoms over a known distance is then measured. This experimental technique is based on the idea proposed by T. Hansch and J. Walz.[2][3]

Along with antiprotons from AD, GBAR also needs a constant flux of positrons. For this, a small accelerator with a tungsten target is used. An electron beam of 10MeV strikes this target, and positrons are collected by using a magnetic separator to filter out electrons and the gamma-ray background. These positrons are then trapped in Penning–Malmberg traps and cooled down.[4][3]

Using a neutral particle for GBAR experiment is necessary in order to avoid any kind of electromagnetic interference. In theory, the electrically neutral antineutrons would be the smallest chunks for this experiment, but they cannot be used to due their quick decay time. The next simplest particle is therefore the antihydrogen.[3]

GBAR collaboration[edit]

The GBAR collaboration comprises the following institutions:

  • ETH Zurich, Switzerland
  • University of Mainz, Germany
  • Kastler–Brossel Laboratory, France
  • CSNSM, Paris-Saclay University, France
  • RIKEN, Japan
  • University of Tokyo, Japan
  • University of Strasbourg, France
  • Uppsala University, Sweden
  • Stockholm University, Sweden
  • Swansea University, UK
  • National Centre for Nuclear Research, Poland
  • See also[edit]

    1. Antiproton Decelerator
    2. AEgIS experiment

    References[edit]

    1. ^ "GBAR". CERN. Retrieved 2021-06-29.
  • ^ Pérez, P.; et al. (2015). "The GBAR antimatter gravity experiment". Hyperfine Interactions. 233 (1–3): 21–27. Bibcode:2015HyInt.233...21P. doi:10.1007/s10751-015-1154-8. S2CID 119379544.
  • ^ a b c Chardin, G.; Grandemange, P.; Lunney, D.; Manea, V.; Badertscher, A.; Crivelli, P.; Curioni, A.; Marchionni, A.; Rossi, B. (2011). Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest. Proposal. CERN. Geneva. SPS and PS Experiments Committee, SPSC.
  • ^ Perez, P. (2019). AD-7/GBAR plans after LS2. Memorandum. CERN. Geneva. SPS and PS Experiments Committee, SPSC.
  • External links[edit]

    GBAR experiment record on INSPIRE-HEP


    Retrieved from "https://en.wikipedia.org/w/index.php?title=GBAR_experiment&oldid=1159028439"

    Categories: 
    Particle experiments
    CERN experiments
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 7 June 2023, at 19:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki