Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Mathematical definition  





3 See also  





4 References  





5 Further reading  





6 External links  














Gabor atom






Română
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In applied mathematics, Gabor atoms, or Gabor functions, are functions used in the analysis proposed by Dennis Gabor in 1946 in which a family of functions is built from translations and modulations of a generating function.

Overview

[edit]

In 1946,[1] Dennis Gabor suggested the idea of using a granular system to produce sound. In his work, Gabor discussed the problems with Fourier analysis. Although he found the mathematics to be correct, it did not reflect the behaviour of sound in the world, because sounds, such as the sound of a siren, have variable frequencies over time. Another problem was the underlying supposition, as we use sine waves analysis, that the signal under concern has infinite duration even though sounds in real life have limited duration – see time–frequency analysis. Gabor applied ideas from quantum physics to sound, allowing an analogy between sound and quanta. He proposed a mathematical method to reduce Fourier analysis into cells. His research aimed at the information transmission through communication channels. Gabor saw in his atoms a possibility to transmit the same information but using less data. Instead of transmitting the signal itself it would be possible to transmit only the coefficients which represent the same signal using his atoms.

Mathematical definition

[edit]

The Gabor function is defined by

where a and b are constants and g is a fixed function in L2(R), such that ||g|| = 1. Depending on , , and , a Gabor system may be a basis for L2(R), which is defined by translations and modulations. This is similar to a wavelet system, which may form a basis through dilating and translating a mother wavelet.

When one takes

one gets the kernel of the Gabor transform.

See also

[edit]

References

[edit]
  1. ^ Gabor, D. (1946). "Theory of communication. Part 1: The analysis of information". Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering. 93 (26): 429–441. doi:10.1049/ji-3-2.1946.0074.

Further reading

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gabor_atom&oldid=1174262107"

Categories: 
Wavelets
Fourier analysis
 



This page was last edited on 7 September 2023, at 09:51 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki