Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Minimal uncertainty property  





2 Equation  





3 Time-causal analogue of the Gabor wavelet  





4 See also  





5 References  





6 External links  














Gabor wavelet







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Gabor wavelets are wavelets invented by Dennis Gabor using complex functions constructed to serve as a basis for Fourier transformsininformation theory applications. They are very similar to Morlet wavelets. They are also closely related to Gabor filters. The important property of the wavelet is that it minimizes the product of its standard deviations in the time and frequency domain (given by the variances defined below). Put another way, the uncertainty in information carried by this wavelet is minimized. However they have the downside of being non-orthogonal, so efficient decomposition into the basis is difficult. Since their inception, various applications have appeared, from image processing to analyzing neurons in the human visual system.[1][2]

Minimal uncertainty property[edit]

The motivation for Gabor wavelets comes from finding some function which minimizes its standard deviation in the time and frequency domains. More formally, the variance in the position domain is:

where is the complex conjugate of and is the arithmetic mean, defined as:

The variance in the wave number domain is:

Where is the arithmetic mean of the Fourier Transform of , :

With these defined, the uncertainty is written as:

This quantity has been shown to have a lower bound of . The quantum mechanics view is to interpret as the uncertainty in position and as uncertainty in momentum. A function that has the lowest theoretically possible uncertainty bound is the Gabor Wavelet.[3]

Equation[edit]

The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows:[3]

As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed. controls the rate of this exponential drop-off and controls the rate of modulation.

It is also worth noting the Fourier transform (unitary, angular-frequency convention) of a Gabor wavelet, which is also a Gabor wavelet:

An example wavelet is given here:

A Gabor wavelet with a = 2, x0 = 0, and k0 = 1

Time-causal analogue of the Gabor wavelet[edit]

When processing temporal signals, data from the future cannot be accessed, which leads to problems if attempting to use Gabor functions for processing real-time signals that depend upon the temporal dimension. A time-causal analogue of the Gabor filter has been developed in [4] based on replacing the Gaussian kernel in the Gabor function with a time-causal and time-recursive smoothing kernel referred to as the time-causal limit kernel. In this way, time-frequency analysis based on the resulting complex-valued extension of the time-causal limit kernel makes it possible to capture essentially similar transformations of a temporal signal as the Gabor wavelets can handle, and corresponding to the Heisenberg group, while carried out with strictly time-causal and time-recursive operations, see [4] for further details.

See also[edit]

References[edit]

  1. ^ Lee, Tai S. (October 1996). "Image Representation Using 2D Gabor wavelets" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 18 (10): 959–971. doi:10.1109/34.541406.
  • ^ Daugman, John. Computer Vision Lecture Series (PDF). University of Cambridge.
  • ^ a b Daugman, John. Information Theory Lecture Series (PDF). University of Cambridge.
  • ^ a b Lindeberg, T. (23 January 2023). "A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time". Biological Cybernetics: 1–39. arXiv:2202.09209. doi:10.1007/s00422-022-00953-6.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Gabor_wavelet&oldid=1229827079"

    Category: 
    Wavelets
     



    This page was last edited on 18 June 2024, at 22:20 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki