Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Gauge bosons in the Standard Model  



1.1  Multiplicity of gauge bosons  





1.2  Massive gauge bosons  







2 Beyond the Standard Model  



2.1  Grand unification theories  





2.2  Gravitons  





2.3  W and Z bosons  







3 See also  





4 References  





5 External links  














Gauge boson






Afrikaans
Alemannisch
العربية
Asturianu

Беларуская
Български
Bosanski
Català
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Latviešu
Limburgs
Македонски

Bahasa Melayu
Nederlands

Norsk bokmål
Plattdüütsch
Polski
Português
Română
Русский
Scots
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
Татарча / tatarça

Türkçe
Українська
اردو
Tiếng Vit
Winaray



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Standard Model of elementary particles, with the gauge bosons in the fourth column in red

Inparticle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions.[1][2] Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge bosons, usually as virtual particles.

Photons, W and Z bosons, and gluons are gauge bosons. All known gauge bosons have a spin of 1; for comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Therefore, all known gauge bosons are vector bosons.

Gauge bosons are different from the other kinds of bosons: first, fundamental scalar bosons (the Higgs boson); second, mesons, which are composite bosons, made of quarks; third, larger composite, non-force-carrying bosons, such as certain atoms.

Gauge bosons in the Standard Model[edit]

The Standard Modelofparticle physics recognizes four kinds of gauge bosons: photons, which carry the electromagnetic interaction; W and Z bosons, which carry the weak interaction; and gluons, which carry the strong interaction.[3]

Isolated gluons do not occur because they are colour-charged and subject to colour confinement.

Multiplicity of gauge bosons[edit]

In a quantized gauge theory, gauge bosons are quanta of the gauge fields. Consequently, there are as many gauge bosons as there are generators of the gauge field. In quantum electrodynamics, the gauge group is U(1); in this simple case, there is only one gauge boson, the photon. In quantum chromodynamics, the more complicated group SU(3) has eight generators, corresponding to the eight gluons. The three W and Z bosons correspond (roughly) to the three generators of SU(2)inelectroweak theory.

Massive gauge bosons[edit]

Gauge invariance requires that gauge bosons are described mathematically by field equations for massless particles. Otherwise, the mass terms add non-zero additional terms to the Lagrangian under gauge transformations, violating gauge symmetry. Therefore, at a naïve theoretical level, all gauge bosons are required to be massless, and the forces that they describe are required to be long-ranged. The conflict between this idea and experimental evidence that the weak and strong interactions have a very short range requires further theoretical insight.

According to the Standard Model, the W and Z bosons gain mass via the Higgs mechanism. In the Higgs mechanism, the four gauge bosons (of SU(2)×U(1) symmetry) of the unified electroweak interaction couple to a Higgs field. This field undergoes spontaneous symmetry breaking due to the shape of its interaction potential. As a result, the universe is permeated by a non-zero Higgs vacuum expectation value (VEV). This VEV couples to three of the electroweak gauge bosons (W+, W and Z), giving them mass; the remaining gauge boson remains massless (the photon). This theory also predicts the existence of a scalar Higgs boson, which has been observed in experiments at the LHC.[4]

Beyond the Standard Model[edit]

Grand unification theories[edit]

The Georgi–Glashow model predicts additional gauge bosons named X and Y bosons. The hypothetical X and Y bosons mediate interactions between quarks and leptons, hence violating conservation of baryon number and causing proton decay. Such bosons would be even more massive than W and Z bosons due to symmetry breaking. Analysis of data collected from such sources as the Super-Kamiokande neutrino detector has yielded no evidence of X and Y bosons.[citation needed]

Gravitons[edit]

The fourth fundamental interaction, gravity, may also be carried by a boson, called the graviton. In the absence of experimental evidence and a mathematically coherent theory of quantum gravity, it is unknown whether this would be a gauge boson or not. The role of gauge invarianceingeneral relativity is played by a similar[clarification needed] symmetry: diffeomorphism invariance.

W′ and Z′ bosons[edit]

W′ and Z′ bosons refer to hypothetical new gauge bosons (named in analogy with the Standard Model W and Z bosons).

See also[edit]

References[edit]

  1. ^ Gribbin, John (2000). Q is for Quantum – An Encyclopedia of Particle Physics. Simon & Schuster. ISBN 0-684-85578-X.
  • ^ Clark, John, E.O. (2004). The Essential Dictionary of Science. Barnes & Noble. ISBN 0-7607-4616-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ Veltman, Martinus (2003). Facts and Mysteries in Elementary Particle Physics. World Scientific. ISBN 981-238-149-X.
  • ^ "CERN and the Higgs boson". CERN. Archived from the original on 23 November 2016. Retrieved 23 November 2016.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Gauge_boson&oldid=1171598114"

    Categories: 
    Bosons
    Gauge bosons
    Particle physics
    Hidden categories: 
    CS1 maint: multiple names: authors list
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2012
    Wikipedia articles needing clarification from September 2016
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 22 August 2023, at 03:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki