Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Internal structure  





2 Orientation  





3 Craters  





4 Faculae  





5 Canyons  





6 Montes  





7 References  





8 Further reading  














Geology of Ceres






العربية
Português
Română
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Dawn spacecraft view of Occator Crater on Ceres in enhanced color, this image was taken on 4 May 2015.[1]

The geology of Ceres consists of the characteristics of the surface, the crust and the interior of the dwarf planet Ceres. The surface of Ceres is comparable to the surfaces of Saturn's moons Rhea and Tethys, and Uranus's moons Umbriel and Oberon.

The spectrum of Ceres is similar to that of C-type asteroids.[2] However, since it also has spectral features of carbonates and clay minerals, which are usually absent in the spectra of other C-type asteroids, Ceres is sometimes classified as a G-type asteroid.

Ceres's surface has an albedo of 0.09, which is quite dark compared to the moons in the outer Solar System. This might be a result of the relatively high temperature of Ceres's surface, the maximum temperature with the Sun overhead was estimated from measurements to be 235 K (−38 °C; −37 °F) on 5 May 1991.[3] In a vacuum, ice is unstable at this temperature. Material left behind by the sublimation of surface ice could explain the dark surface of Ceres compared to the icy moons of the outer Solar System.

Internal structure[edit]

Diagram showing a possible internal structure of Ceres

Ceres's oblateness is consistent with a differentiated body, a rocky core overlain with an icy mantle.[4]

This 100-kilometer-thick mantle (23%–28% of Ceres by mass; 50% by volume)[5] contains up to 200 million cubic kilometers of water, which would be more than the amount of fresh wateronEarth.[6] Also, some characteristics of its surface and history (such as its distance from the Sun, which weakened solar radiation enough to allow some fairly low-freezing-point components to be incorporated during its formation), point to the presence of volatile materials in the interior of Ceres.[7]

It has been suggested that a remnant layer of liquid water (or muddy ocean) may have survived to the present under a layer of ice.[8][9] Measurements taken by Dawn confirm that Ceres is partially differentiated and has a shape in hydrostatic equilibrium, the smallest equilibrium body known.[10] In 2020, researchers reported evidence suggesting Ceres has a brine reservoir beneath its surface, pointing to possible subsurface brine oceans.[11]

Ceres has a rocky, dusty crust with large deposits of salts such as sodium carbonate and ammonium chloride.[12]

Internal structure of Ceres.

Orientation[edit]

Ceres has an axial tilt of about 4°,[13] a small part of its pole is currently not observable to Dawn. Ceres rotates once every 9 hours 4 minutes in a prograde westtoeast direction.

Craters[edit]

Impact craters on Ceres exhibit a wide range of appearances. A large number of Cererian craters have central peaks. By correlating the presence or absence of central peaks with the sizes of the craters, scientists can infer the properties of Ceres’s crust, such as how strong it is. Rather than a peak at the center, some craters contain large pits, depressions that may be a result of gases escaping after the impact.[14]

The surface of Ceres has a large number of craters with low relief, indicating that they lie over a relatively soft surface, probably of water ice. Kerwan crater is extremely low relief, with a diameter of 283.88 kilometers, reminiscent of large, flat craters on Tethys and Iapetus. It is distinctly shallow for its size, and lacks a central peak, which may have been destroyed by a 15-kilometer-wide crater at the center. The crater is likely to be old relative to the rest of Ceres's surface, because it is overlapped by nearly every other feature in the area.[citation needed]

Faculae[edit]

Several bright surface features were discovered on the dwarf planet Ceres by the Dawn spacecraft in 2015.[15] The brightest spot is located in the middle of Occator crater, and is called "bright spot 5". There are 130 bright areas that have been discovered on Ceres, which are thought to be salt or ammonia-rich clays.[16] Scientists reported that the bright spots on Ceres may be related to a type of salt in 2015, particularly a form of brine containing magnesium sulfate hexahydrate (MgSO4·6H2O); the spots were also found to be associated with ammonia-rich clays.[17]

Canyons[edit]

Several long canyons are evident in this view. The large crater that extends off the bottom of the picture is in the center of the picture above. Also notice the bright spots, just visible on the limb at upper left. The first picture above shows them from overhead.

Many long, straight or gently curved canyons have been found by Dawn. Geologists have yet to determine how they formed, and it is likely that several different mechanisms are responsible. Some of these might turn out to be the result of the crust of Ceres shrinking as the heat and other energy accumulated upon formation gradually radiated into space. When the behemoth slowly cooled, stresses could have fractured the rocky, icy ground. Others might have been produced when being struck by other objects, rupturing the terrain.[14]

Montes[edit]

Notable geological features on Ceres

The most prominent mountain on Ceres is Ahuna Mons,[18] a possible cryovolcanic dome[19] about 6 kilometers high and 15 kilometers wide at the base. It was discovered on images taken by the Dawn spacecraft in orbit around Ceres in 2015.

Bright streaks run top to bottom on its slopes; these streaks are thought to contain salts, similar to the better known Cererian bright spots. The low crater count on Ahuna Mons's edifice suggests that the cryovolcano could be no older than 200 million years,[20][21] and indeed models of plastic relaxation of ice at the latitude of Ahuna Mons are consistent with that age.[19]

There are twenty-two identified montes on Ceres. Most of these have relaxed substantially over time, and it was only after modeling the expected shapes of old cryovolcanoes that they were identified. It has been calculated that Ceres averages one such cryovolcano every 50 million years.[19] Yamor Mons (previously named Ysolo Mons), near the north pole, has a diameter of 16 km[22] and is the only other Cererian mountain with the shape of Ahuna Mons, though old and battered, the cold temperatures at the pole have preserved its shape.[19] Liberalia Mons is near the equator and has a diameter of 90 km.[23]

References[edit]

  1. ^ "Dawn data from Ceres publicly released: Finally, color global portraits!". www.planetary.org. Retrieved 2016-02-04.
  • ^ doi:10.1016/j.icarus.2006.08.022
  • ^ Saint-Pe, O.; Combes, M.; Rigaut, F. (1993-10-01). "Ceres surface properties by high-resolution imaging from earth". Icarus. 105 (2): 271. Bibcode:1993Icar..105..271S. doi:10.1006/icar.1993.1125. ISSN 0019-1035.
  • ^ Thomas, P. C.; Parker, J. Wm.; McFadden, L. A.; et al. (2005). "Differentiation of the asteroid Ceres as revealed by its shape". Nature. 437 (7056): 224–226. Bibcode:2005Natur.437..224T. doi:10.1038/nature03938. PMID 16148926. S2CID 17758979.
  • ^ 0.72–0.77 anhydrous rock by mass, per William B. McKinnon (2008) "On The Possibility Of Large KBOs Being Injected Into The Outer Asteroid Belt". American Astronomical Society, DPS meeting No. 40, #38.03 Bibcode:2008DPS....40.3803M
  • ^ Carey, Bjorn (7 September 2005). "Largest Asteroid Might Contain More Fresh Water than Earth". SPACE.com. Archived from the original on 18 December 2010. Retrieved 16 August 2006.
  • ^ Carry, Benoit; et al. (2007). "Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres" (PDF). Astronomy & Astrophysics. 478 (1): 235–244. arXiv:0711.1152. Bibcode:2008A&A...478..235C. doi:10.1051/0004-6361:20078166. S2CID 6723533. Archived from the original (PDF) on 30 May 2008.
  • ^ McCord, T. B.; Sotin, C. (21 May 2005). "Ceres: Evolution and current state". Journal of Geophysical Research: Planets. 110 (E5): E05009. Bibcode:2005JGRE..110.5009M. doi:10.1029/2004JE002244.
  • ^ O'Brien, D. P.; Travis, B. J.; Feldman, W. C.; Sykes, M. V.; Schenk, P. M.; Marchi, S.; Russell, C. T.; Raymond, C. A. (March 2015). "The Potential for Volcanism on Ceres due to Crustal Thickening and Pressurization of a Subsurface Ocean" (PDF). 46th Lunar and Planetary Science Conference. p. 2831. Retrieved 1 March 2015.
  • ^ "DPS 2015: First reconnaissance of Ceres by Dawn". The Planetary Society.
  • ^ "NASA's Dawn Reveals Recent Changes in Ceres' Surface". NASA. 10 August 2020. Retrieved 17 July 2024.
  • ^ "In Depth: Ceres". NASA Solar System Exploration. Retrieved 2023-09-24.
  • ^ "Asteroid Ceres P_constants (PcK) SPICE kernel file" (txt). Retrieved 2023-08-21.
  • ^ a b "Dawn Journal: Ceres' Intriguing Geology". www.planetary.org. Retrieved 2016-03-10.
  • ^ "Mysterious Bright Spots Shine on Dwarf Planet Ceres (Photos)". Space.com. 18 February 2015. Retrieved 2016-02-05.
  • ^ "Dawn And Ceres: A Dwarf Planet Revealed [Infographic]". Forbes. Retrieved 2016-03-27.
  • ^ "New Clues to Ceres' Bright Spots and Origins". NASA/JPL. Retrieved 2016-03-13.
  • ^ "Planetary Names: Mons, montes: Ahuna Mons on Ceres". planetarynames.wr.usgs.gov. Retrieved 2016-03-09.
  • ^ a b c d Ceres takes life an ice volcano at a time, 2018-9-17
  • ^ "Deep freeze puts the squeeze on dwarf planet Ceres". ASU Now: Access, Excellence, Impact. 2015-12-15. Retrieved 2016-03-09.
  • ^ "Ice Volcanoes and More: Dwarf Planet Ceres Continues to Surprise". Space.com. September 2016.
  • ^ "Yamor Mons". Gazetteer of Planetary Nomenclature. US Geological Survey. Retrieved 24 December 2016.
  • ^ "Liberalia Mons". Gazetteer of Planetary Nomenclature. US Geological Survey. Retrieved 24 December 2016.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Geology_of_Ceres&oldid=1235018218"

    Categories: 
    Planetary geology
    Ceres (dwarf planet)
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from April 2024
     



    This page was last edited on 17 July 2024, at 08:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki