Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Giant component in ErdősRényi model  





2 Graphs with arbitrary degree distributions  





3 Criteria for giant component existence in directed and undirected configuration graphs  





4 See also  





5 References  














Giant component






Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


AnErdős–Rényi–Gilbert random graph with 1000 vertices at the critical edge probability , showing a large component and many small ones. At this edge probability, the large component is not yet a giant component: it contains only a sublinear number of vertices.

Innetwork theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices.

More precisely, in graphs drawn randomly from a probability distribution over arbitrarily large graphs, a giant component is a connected component whose fraction of the overall number of vertices is bounded away from zero. In sufficiently dense graphs distributed according to the Erdős–Rényi model, a giant component exists with high probability.

Giant component in Erdős–Rényi model[edit]

Giant components are a prominent feature of the Erdős–Rényi model (ER) of random graphs, in which each possible edge connecting pairs of a given set of n vertices is present, independently of the other edges, with probability p. In this model, if for any constant , then with high probability (in the limit as goes to infinity) all connected components of the graph have size O(log n), and there is no giant component. However, for there is with high probability a single giant component, with all other components having size O(log n). For , intermediate between these two possibilities, the number of vertices in the largest component of the graph, is with high probability proportional to .[1]

Giant component is also important in percolation theory.[1][2] When a fraction of nodes, , is removed randomly from an ER network of degree , there exists a critical threshold, . Above there exists a giant component (largest cluster) of size, . fulfills, . For the solution of this equation is , i.e., there is no giant component.

At, the distribution of cluster sizes behaves as a power law, ~ which is a feature of phase transition.

Alternatively, if one adds randomly selected edges one at a time, starting with an empty graph, then it is not until approximately edges have been added that the graph contains a large component, and soon after that the component becomes giant. More precisely, when t edges have been added, for values of t close to but larger than , the size of the giant component is approximately .[1] However, according to the coupon collector's problem, edges are needed in order to have high probability that the whole random graph is connected.

Graphs with arbitrary degree distributions[edit]

A similar sharp threshold between parameters that lead to graphs with all components small and parameters that lead to a giant component also occurs in random graphs with non-uniform degree distributions. The degree distribution does not define a graph uniquely. However under assumption that in all respects other than their degree distribution, the graphs are treated as entirely random, many results on finite/infinite-component sizes are known. In this model, the existence of the giant component depends only on the first two (mixed) moments of the degree distribution. Let a randomly chosen vertex have degree , then the giant component exists[3] if and only if which is also written in the form of is the mean degree of the network. Similar expressions are also valid for directed graphs, in which case the degree distribution is two-dimensional.[4] There are three types of connected components in directed graphs. For a randomly chosen vertex:

  1. out-component is a set of vertices that can be reached by recursively following all out-edges forward;
  2. in-component is a set of vertices that can be reached by recursively following all in-edges backward;
  3. weak component is a set of vertices that can be reached by recursively following all edges regardless of their direction.

Criteria for giant component existence in directed and undirected configuration graphs[edit]

Let a randomly chosen vertex has in-edges and out edges. By definition, the average number of in- and out-edges coincides so that . If is the generating function of the degree distribution for an undirected network, then can be defined as . For directed networks, generating function assigned to the joint probability distribution can be written with two valuables and as: , then one can define and . The criteria for giant component existence in directed and undirected random graphs are given in the table below:

Type Criteria
undirected: giant component ,[3]or[4]
directed: giant in/out-component ,[4]or[4]
directed: giant weak component [5]

See also[edit]

References[edit]

  1. ^ a b c Bollobás, Béla (2001), "6. The Evolution of Random Graphs—The Giant Component", Random Graphs, Cambridge studies in advanced mathematics, vol. 73 (2nd ed.), Cambridge University Press, pp. 130–159, ISBN 978-0-521-79722-1.
  • ^ Newman, M. E. J. (2010). Networks : an introduction. New York: Oxford University Press. OCLC 456837194.
  • ^ a b Molloy, Michael; Reed, Bruce (1995). "A critical point for random graphs with a given degree sequence". Random Structures & Algorithms. 6 (2–3): 161–180. doi:10.1002/rsa.3240060204. ISSN 1042-9832.
  • ^ a b c d Newman, M. E. J.; Strogatz, S. H.; Watts, D. J. (2001-07-24). "Random graphs with arbitrary degree distributions and their applications". Physical Review E. 64 (2): 026118. arXiv:cond-mat/0007235. Bibcode:2001PhRvE..64b6118N. doi:10.1103/physreve.64.026118. ISSN 1063-651X. PMID 11497662.
  • ^ Kryven, Ivan (2016-07-27). "Emergence of the giant weak component in directed random graphs with arbitrary degree distributions". Physical Review E. 94 (1): 012315. arXiv:1607.03793. Bibcode:2016PhRvE..94a2315K. doi:10.1103/physreve.94.012315. ISSN 2470-0045. PMID 27575156. S2CID 206251373.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Giant_component&oldid=1230103937"

    Categories: 
    Graph connectivity
    Random graphs
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 20 June 2024, at 17:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki