Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Significance  





3 Statement of theorem  





4 Corollary  



4.1  Comments  







5 Application to finance  





6 Application to Langevin equations  





7 See also  





8 References  





9 External links  














Girsanov theorem






Deutsch
Français

Português
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Visualisation of the Girsanov theorem. The left side shows a Wiener process with negative drift under a canonical measure P; on the right side each path of the process is colored according to its likelihood under the martingale measure Q. The density transformation from PtoQ is given by the Girsanov theorem.

Inprobability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument (such as a share price or interest rate) will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

History[edit]

Results of this type were first proved by Cameron-Martin in the 1940s and by Igor Girsanov in 1960. They have been subsequently extended to more general classes of process culminating in the general form of Lenglart (1977).

Significance[edit]

Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q is a measure that is absolutely continuous with respect to P then every P-semimartingale is a Q-semimartingale.

Statement of theorem[edit]

We state the theorem first for the special case when the underlying stochastic process is a Wiener process. This special case is sufficient for risk-neutral pricing in the Black–Scholes model.

Let be a Wiener process on the Wiener probability space . Let be a measurable process adapted to the natural filtration of the Wiener process ; we assume that the usual conditions have been satisfied.

Given an adapted process define

where is the stochastic exponentialofX with respect to W, i.e.

and denotes the quadratic variation of the process X.

If is a martingale then a probability measure Q can be defined on such that Radon–Nikodym derivative

Then for each t the measure Q restricted to the unaugmented sigma fields is equivalent to P restricted to

Furthermore, if is a local martingale under P then the process

is a Q local martingale on the filtered probability space .

Corollary[edit]

IfX is a continuous process and W is Brownian motion under measure P then

is Brownian motion under Q.

The fact that is continuous is trivial; by Girsanov's theorem it is a Q local martingale, and by computing

it follows by Levy's characterization of Brownian motion that this is a Q Brownian motion.

Comments[edit]

In many common applications, the process X is defined by

For X of this form then a necessary and sufficient condition for to be a martingale is Novikov's condition which requires that

The stochastic exponential is the process Z which solves the stochastic differential equation

The measure Q constructed above is not equivalent to Pon as this would only be the case if the Radon–Nikodym derivative were a uniformly integrable martingale, which the exponential martingale described above is not. On the other hand, as long as Novikov's condition is satisfied the measures are equivalent on .

Additionally, then combining this above observation in this case, we see that the process

for is a Q Brownian motion. This was Igor Girsanov's original formulation of the above theorem.

Application to finance[edit]

This theorem can be used to show in the Black–Scholes model the unique risk-neutral measure, i.e. the measure in which the fair value of a derivative is the discounted expected value, Q, is specified by

Application to Langevin equations[edit]

Another application of this theorem, also given in the original paper of Igor Girsanov, is for stochastic differential equations. Specifically, let us consider the equation

where denotes a Brownian motion. Here and are fixed deterministic functions. We assume that this equation has a unique strong solution on . In this case Girsanov's theorem may be used to compute functionals of directly in terms a related functional for Brownian motion. More specifically, we have for any bounded functional on continuous functions that

This follows by applying Girsanov's theorem, and the above observation, to the martingale process

In particular, we note that with the notation above, the process

is a Q Brownian motion. Rewriting this in differential form as

we see that the law of under Q solves the equation defining , as is a Q Brownian motion. In particular, we see that the right-hand side may be written as , where Q is the measure taken with respect to the process Y, so the result now is just the statement of Girsanov's theorem.

A more general form of this application is that if both

admit unique strong solutions on , then for any bounded functional on , we have that

See also[edit]

References[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Girsanov_theorem&oldid=1224282019"

Categories: 
Stochastic processes
Mathematical theorems
Mathematical finance
Hidden categories: 
Articles with short description
Short description is different from Wikidata
CS1 French-language sources (fr)
 



This page was last edited on 17 May 2024, at 11:47 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki