Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Inverse conjectures  





3 References  














Gowers norm







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, in the field of additive combinatorics, a Gowers normoruniformity norm is a class of normsonfunctions on a finite group or group-like object which quantify the amount of structure present, or conversely, the amount of randomness.[1] They are used in the study of arithmetic progressions in the group. They are named after Timothy Gowers, who introduced it in his work on Szemerédi's theorem.[2]

Definition

[edit]

Let be a complex-valued function on a finite abelian group and let denote complex conjugation. The Gowers -norm is

Gowers norms are also defined for complex-valued functions f on a segment , where N is a positive integer. In this context, the uniformity norm is given as , where is a large integer, denotes the indicator function of [N], and is equal to for and for all other . This definition does not depend on , as long as .

Inverse conjectures

[edit]

Aninverse conjecture for these norms is a statement asserting that if a bounded function f has a large Gowers d-norm then f correlates with a polynomial phase of degree d − 1 or other object with polynomial behaviour (e.g. a (d − 1)-step nilsequence). The precise statement depends on the Gowers norm under consideration.

The Inverse Conjecture for vector spaces over a finite field asserts that for any there exists a constant such that for any finite-dimensional vector space V over and any complex-valued function on, bounded by 1, such that , there exists a polynomial sequence such that

where . This conjecture was proved to be true by Bergelson, Tao, and Ziegler.[3][4][5]

The Inverse Conjecture for Gowers norm asserts that for any , a finite collection of (d − 1)-step nilmanifolds and constants can be found, so that the following is true. If is a positive integer and is bounded in absolute value by 1 and , then there exists a nilmanifold and a nilsequence where and bounded by 1 in absolute value and with Lipschitz constant bounded by such that:

This conjecture was proved to be true by Green, Tao, and Ziegler.[6][7] It should be stressed that the appearance of nilsequences in the above statement is necessary. The statement is no longer true if we only consider polynomial phases.

References

[edit]
  1. ^ Hartnett, Kevin. "Mathematicians Catch a Pattern by Figuring Out How to Avoid It". Quanta Magazine. Retrieved 2019-11-26.
  • ^ Gowers, Timothy (2001). "A new proof of Szemerédi's theorem". Geometric & Functional Analysis. 11 (3): 465–588. doi:10.1007/s00039-001-0332-9. MR 1844079. S2CID 124324198.
  • ^ Bergelson, Vitaly; Tao, Terence; Ziegler, Tamar (2010). "An inverse theorem for the uniformity seminorms associated with the action of ". Geometric & Functional Analysis. 19 (6): 1539–1596. arXiv:0901.2602. doi:10.1007/s00039-010-0051-1. MR 2594614. S2CID 10875469.
  • ^ Tao, Terence; Ziegler, Tamar (2010). "The inverse conjecture for the Gowers norm over finite fields via the correspondence principle". Analysis & PDE. 3 (1): 1–20. arXiv:0810.5527. doi:10.2140/apde.2010.3.1. MR 2663409. S2CID 16850505.
  • ^ Tao, Terence; Ziegler, Tamar (2011). "The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic". Annals of Combinatorics. 16: 121–188. arXiv:1101.1469. doi:10.1007/s00026-011-0124-3. MR 2948765. S2CID 253591592.
  • ^ Green, Ben; Tao, Terence; Ziegler, Tamar (2011). "An inverse theorem for the Gowers -norm". Electron. Res. Announc. Math. Sci. 18: 69–90. arXiv:1006.0205. doi:10.3934/era.2011.18.69. MR 2817840.
  • ^ Green, Ben; Tao, Terence; Ziegler, Tamar (2012). "An inverse theorem for the Gowers -norm". Annals of Mathematics. 176 (2): 1231–1372. arXiv:1009.3998. doi:10.4007/annals.2012.176.2.11. MR 2950773. S2CID 119588323.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Gowers_norm&oldid=1175199180"

    Category: 
    Additive combinatorics
     



    This page was last edited on 13 September 2023, at 11:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki