Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples of application  





2 Preferential flotation  





3 Clarification/thickening  





4 Sinking chamber  





5 Types of gravity separators  





6 References  














Gravity separation






Español
فارسی
Latviešu
Монгол
Português
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Gravity separation is an industrial method of separating two components, either a suspension, or dry granular mixture where separating the components with gravity is sufficiently practical: i.e. the components of the mixture have different specific weight. Every gravitational method uses gravity as the primary force for separation. One type of gravity separator lifts the material by vacuum over an inclined vibrating screen covered deck.[1] This results in the material being suspended in air while the heavier impurities are left behind on the screen and are discharged from the stone outlet. Gravity separation is used in a wide variety of industries, and can be most simply differentiated by the characteristics of the mixture to be separated - principally that of 'wet' i.e. - a suspension versus 'dry' -a mixture of granular product. Often other methods are applied to make the separation faster and more efficient, such as flocculation, coagulation and suction. The most notable advantages of the gravitational methods are their cost effectiveness and in some cases excellent reduction. Gravity separation is an attractive unit operation as it generally has low capital and operating costs, uses few if any chemicals that might cause environmental concerns and the recent development of new equipment enhances the range of separations possible.

Examples of application[edit]

Agriculture- Gravity separation tables are used for the removal of impurities, admixture, insect damage and immature kernels from the following examples: wheat, barley, oilseed rape, peas, beans, cocoa beans, linseed. They can be used to separate and standardize coffee beans, cocoa beans, peanuts, corn, peas, rice, wheat, sesame and other food grains.

The gravity separator separates products of same size but with difference in specific weight. It has a vibrating rectangular deck, which makes it easy for the product to travel a longer distance, ensuring improved quality of the end product. The pressurized air in the deck enables the material to split according to its specific weight. As a result, the heavier particles travel to the higher level while the lighter particles travel to the lower level of the deck. It comes with easily adjustable air fans to control the volume of air distribution at different areas of the vibrating deck to meet the air supply needs of the deck. The table inclination, speed of eccentric motion and the feed rate can be precisely adjusted to achieve smooth operation of the machine.[2]

Preferential flotation[edit]

Heavy liquids such as tetrabromoethane can be used to separate ores from supporting rocks by preferential flotation. The rocks are crushed, and while sand, limestone, dolomite, and other types of rock material will float on TBE, ores such as sphalerite, galena and pyrite will sink.

Clarification/thickening[edit]

Clarification is a name for the method of separating fluid from solid particles. Often clarification is used along with flocculation to make the solid particles sink faster to the bottom of the clarification pool while fluid is obtained from the surface which is free of solid particles.

Thickening is the same as clarification except reverse. Solids that sink to the bottom are obtained and fluid is rejected from the surface.

The difference of these methods could be demonstrated with the methods used in waste water processing: in the clarification phase, sludge sinks to the bottom of the pool and clear water flows over the clear water grooves and continues its journey. The obtained sludge is then pumped into the thickeners, where sludge thickens farther and is then obtained to be pumped into digestion to be prepared into fertilizer.

Sinking chamber[edit]

When clearing gases, an often used and mostly working method for clearing large particles is to blow it into a large chamber where the gas's velocity decreases and the solid particles start sinking to the bottom. This method is used mostly because of its cheap cost.

Types of gravity separators[edit]

References[edit]

  1. ^ Falconer, Andrew (2003). "Gravity Separation: Old Technique/New Methods". Physical Separation in Science and Engineering. 12: 31–48. doi:10.1080/1478647031000104293.
  • ^ "Gravity Separator Manufacturers - Grain Cleaner - Seed Cleaning Equipment Manufacturer, Suppliers - Mangalore, India". Archived from the original on 2014-07-20. Retrieved 2014-07-07.
  • ^ "Gravity Spiral Concentrator Working Principle". 911 Metallurgist. Mar 26, 2016.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Gravity_separation&oldid=1193080657"

    Category: 
    Separation processes
    Hidden categories: 
    Articles needing additional references from August 2008
    All articles needing additional references
     



    This page was last edited on 1 January 2024, at 23:36 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki