Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Design and development  



1.1  Three-surface design and inherent instability  





1.2  Aeroelastic considerations  







2 Operational history  





3 Aircraft on display  





4 Specifications (X-29)  





5 Notable appearances in media  





6 See also  





7 References  



7.1  Notes  





7.2  Bibliography  







8 External links  














Grumman X-29






العربية
Български
Čeština
Deutsch
Español
فارسی
Français

Bahasa Indonesia
Italiano
עברית
Latviešu
Magyar
Bahasa Melayu
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Simple English
Slovenščina
Српски / srpski
Svenska
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


X-29
A Grumman X-29 in flight
Role Experimental aircraft
National origin United States
Manufacturer Grumman
First flight 14 December 1984
Status Retired
Primary users United States Air Force
NASA
Number built 2

The Grumman X-29 was an American experimental aircraft that tested a forward-swept wing, canard control surfaces, and other novel aircraft technologies. Funded by NASA, the United States Air Force and DARPA, the X-29 was developed by Grumman, and the two built were flown by NASA and the United States Air Force.[1] The aerodynamic instability of the X-29's airframe required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, and to reduce weight. The aircraft first flew in 1984, and two X-29s were flight tested through 1991.

Design and development[edit]

Two X-29As were built by Grumman after the proposal had been chosen over a competing one involving a General Dynamics F-16 Fighting Falcon. The X-29 design made use of the forward fuselage and nose landing gear from two existing F-5A Freedom Fighter airframes (63-8372 became 82-0003 and 65-10573 became 82-0049).[2] The control surface actuators and main landing gear were from the F-16. The technological advancement that made the X-29 a plausible design was the use of carbon-fiber composites. The wings of the X-29, made partially of graphite epoxy, were swept forward at more than 33 degrees; forward-swept wings were first trialed 40 years earlier on the experimental Junkers Ju 287 and OKB-1 EF 131. The Grumman internal designation for the X-29 was "Grumman Model 712" or "G-712".[3]

Aircraft cockpit with numerous old circular dials and gauges. In front of the controls is a black stick control column.
X-29 cockpit

Three-surface design and inherent instability[edit]

The X-29 is described as a three surface aircraft, with canards, forward-swept wings, and aft strake control surfaces,[4] using three-surface longitudinal control.[5] The canards and wings result in reduced trim drag and reduced wave drag, while using the strakes for trim in situations where the center of gravity is off provides less trim drag than relying on the canard to compensate.[4]

The configuration, combined with a center of gravity well aft of the aerodynamic center, made the craft inherently unstable. Stability was provided by the computerized flight control system making 40 corrections per second. The flight control system was made up of three redundant digital computers backed up by three redundant analog computers; any of the three could fly it on its own, but the redundancy allowed them to check for errors. Each of the three would "vote" on their measurements, so that if any one was malfunctioning it could be detected. It was estimated that a total failure of the system was as unlikely as a mechanical failure in an airplane with a conventional arrangement.[5]

The high pitch instability of the airframe led to wide predictions of extreme maneuverability. This perception has held up in the years following the end of flight tests. Air Force tests did not support this expectation.[6] For the flight control system to keep the whole system stable, the ability to initiate a maneuver easily needed to be moderated. This was programmed into the flight control system to preserve the ability to stop the pitching rotation and keep the aircraft from departing out of control. As a result, the whole system as flown (with the flight control system in the loop as well) could not be characterized as having any special increased agility. It was concluded that the X-29 could have had increased agility if it had faster control surface actuators and/or larger control surfaces.[6]

Aeroelastic considerations[edit]

X-29 with aft control surfaces deflected

In a forward swept wing configuration, the aerodynamic lift produces a twisting force which rotates the wing leading edge upward. This results in a higher angle of attack, which increases lift, twisting the wing further. This aeroelastic divergence can quickly lead to structural failure. With conventional metallic construction, a torsionally very stiff wing would be required to resist twisting; stiffening the wing adds weight, which may make the design unfeasible.[7]

The X-29 design made use of the anisotropic elastic coupling between bending and twisting of the carbon fiber composite material to address this aeroelastic effect. Rather than using a very stiff wing, which would carry a weight penalty even with the relatively light-weight composite, the X-29 used a laminate which produced coupling between bending and torsion. As lift increases, bending loads force the wing tips to bend upward. Torsion loads attempt to twist the wing to higher angles of attack, but the coupling resists the loads, twisting the leading edge downward reducing wing angle of attack and lift. With lift reduced, the loads are reduced and divergence is avoided.[7]

Operational history[edit]

The first X-29 took its maiden flight on 14 December 1984 from Edwards AFB piloted by Grumman's Chief Test Pilot Chuck Sewell.[2] The X-29 was the third forward-swept wing jet-powered aircraft design to fly; the other two were the German Junkers Ju 287 (1944) and the HFB-320 Hansa Jet (1964).[8] On 13 December 1985, an X-29 became the first forward-swept wing aircraft to fly at supersonic speed in level flight.

Grumman X-29A at the National Museum of the United States Air Force
Grumman X-29 at Edwards Air Force Base

The X-29 began a NASA test program four months after its first flight. The X-29 proved reliable, and by August 1986 was flying research missions of over three hours involving multiple flights. The first X-29 was not equipped with a spin recovery parachute, as flight tests were planned to avoid maneuvers that could result in departure from controlled flight, such as a spin. The second X-29 was given such a parachute and was involved in high angle-of-attack testing. X-29 number two was maneuverable up to an angle of attack of about 25 degrees with a maximum angle of 67° reached in a momentary pitch-up maneuver.[9][10]

The two X-29 aircraft flew a total of 242 times from 1984 to 1991.[3][11] The NASA Dryden Flight Research Center reported that the X-29 demonstrated a number of new technologies and techniques, and new uses of existing technologies, including the use of "aeroelastic tailoring to control structural divergence", aircraft control and handling during extreme instability, three-surface longitudinal control, a "double-hinged trailing-edge flaperon at supersonic speeds", effective high angle of attack control, vortex control, and demonstration of military utility.[5]

Aircraft on display[edit]

The first X-29, 82-003, is now on display in the Research and Development Gallery at the National Museum of the United States Air ForceonWright-Patterson Air Force Base near Dayton, Ohio.[12] The other craft is on display at the Armstrong Flight Research CenteronEdwards Air Force Base. A full-scale model was on display from 1989 to 2011 at the National Air and Space Museum's National Mall building in Washington, DC.[13] The full-scale replica was moved to the Cradle of Aviation MuseuminGarden City, New York in 2011.

Specifications (X-29)[edit]

Data from Jane's All the World's Aircraft 1988-89[14] NASA X-Planes,[15] Donald,[3] Winchester[11]

General characteristics

48 ft 1 in (15 m) fuselage only

Performance

Avionics

Notable appearances in media[edit]

The 1989 flight simulator game F29 Retaliator was based around the X-29 and imagined a future where it had been developed into a production fighter jet and fitted with various advanced weaponry.[citation needed]

See also[edit]

Aircraft of comparable role, configuration, and era

Related lists

References[edit]

Notes[edit]

  1. ^ Prisco, Jacopo (12 July 2019). "X-29: NASA's ambitious 1980s fighter jet with inverted wings". CNN. Retrieved 30 May 2024.
  • ^ a b Gehrs-Pahl, Andreas, ed. (1995). "The X-Planes: From X-1 to X-34". AIS.org. Archived from the original on 6 May 2001. Retrieved 1 September 2009.
  • ^ a b c Donald 1997, p. 483.
  • ^ a b Roskam 1985, pp. 85–87.
  • ^ a b c "Fact Sheet: X-29 Advanced Technology Demonstrator Aircraft". NASA Armstrong Flight Research Center. 28 February 2014. Retrieved 24 August 2014.
  • ^ a b Butts & Hoover 1989.
  • ^ a b Pamadi 2004.
  • ^ Green 1970, pp. 493–496.
  • ^ Webster & Purifoy 1991.
  • ^ Winchester 2005, p. 261.
  • ^ a b Winchester 2005, p. 262.
  • ^ "Grumman X-29A". National Museum of the U.S. Air Force. 28 May 2015. Retrieved 29 August 2015.
  • ^ "Beyond the Limits". National Air and Space Museum. Archived from the original on 16 June 2012. Retrieved 14 October 2011.
  • ^ Taylor, John W.R., ed. (1988). Jane's All the World's Aircraft 1988-89 (79th ed.). London: Jane's Information Group. pp. 399–400. ISBN 0-7106-0867-5.
  • ^ Jenkins, Landis & Miller 2003, p. 37.
  • ^ Lednicer, David. "The Incomplete Guide to Airfoil Usage". m-selig.ae.illinois.edu. Retrieved 16 April 2019.
  • Bibliography[edit]

    • Butts, S.L.; Hoover, A. D. (May 1989). Flying Qualities Evaluation of the X-29A Research Aircraft (Report). U.S. Air Force Flight Test Center. AFFTC-TR-89-08.
  • Donald, David, ed. (1997). "Grumman X-29A". The Complete Encyclopedia of World Aircraft. New York: Barnes & Noble. ISBN 978-0-7607-0592-6.
  • Green, William (1970). Warplanes of the Third Reich. New York: Doubleday. ISBN 978-0-385-05782-0.
  • Jenkins, Dennis R.; Landis, Tony; Miller, Jay (June 2003). American X-Vehicles: An Inventory—X-1 to X-50 (PDF). Monographs in Aerospace History No. 31. NASA. OCLC 68623213. SP-2003-4531. Archived (PDF) from the original on 25 April 2020.
  • Pamadi, Bandu N. (2004). Performance, Stability, Dynamics, and Control of Airplanes (2nd ed.). American Institute of Aeronautics and Astronautics. doi:10.2514/4.862274. ISBN 978-1-56347-583-2.
  • Putnam, Terrill W. (January 1984). X-29 Flight-Research Program (PDF). AIAA 2nd Flight Test Conference. Las Vegas, Nevada. 16–18 November 1983. NASA. TM-86025.
  • Roskam, Jan (1985). Airplane Design, Part II: Preliminary Configuration Design and Integration of the Propulsion System. Ottawa, Kansas: Roskam Aviation and Engineering Corporation. ISBN 978-1-88488-543-3.
  • Thruelsen, Richard (1976). The Grumman Story. New York: Praeger Publishers. ISBN 978-0-275-54260-3.
  • Treadwell, Terry (1990). Ironworks: Grumman's Fighting Aeroplanes. Shrewsbury, UK: Airlife Publishers. ISBN 978-1-85310-070-3.
  • Warwick, Graham (16 June 1984). "Forward-sweep Technology". Flight International: 1563–1568.
  • Webster, Frederick R.; Purifoy, Dana (July 1991). X-29 High Angle-of-Attack Flying Qualities. U.S. Air Force Flight Test Center. AFFTC-TR-91-15. Archived from the original on 26 August 2014. Retrieved 24 August 2014.
  • Winchester, Jim (2005). "Grumman X-29". X-Planes and Prototypes. London: Amber Books. ISBN 978-1-904687-40-5.
  • Public Domain This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Grumman_X-29&oldid=1228241622"

    Categories: 
    Grumman aircraft
    1980s United States experimental aircraft
    Single-engined jet aircraft
    Forward-swept-wing aircraft
    Canard aircraft
    NASA aircraft
    DARPA
    Edwards Air Force Base
    Relaxed-stability aircraft
    Aircraft first flown in 1984
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from May 2024
    Short description is different from Wikidata
    Aircraft specs templates using afterburner without dry parameter
    All articles with unsourced statements
    Articles with unsourced statements from September 2023
    Wikipedia articles incorporating text from NASA
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 10 June 2024, at 05:37 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki