Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Related honeycombs  



1.1  Hexagonal prismatic honeycomb  





1.2  Trihexagonal prismatic honeycomb  





1.3  Truncated hexagonal prismatic honeycomb  





1.4  Rhombitrihexagonal prismatic honeycomb  





1.5  Truncated trihexagonal prismatic honeycomb  





1.6  Snub trihexagonal prismatic honeycomb  





1.7  Snub trihexagonal antiprismatic honeycomb  





1.8  Elongated triangular prismatic honeycomb  





1.9  Gyrated triangular prismatic honeycomb  





1.10  Gyroelongated triangular prismatic honeycomb  







2 References  














Triangular prismatic honeycomb






Esperanto
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Gyrated triangular prismatic honeycomb)

Triangular prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol {3,6}×{∞} or t0,3{3,6,2,∞}
Coxeter diagrams

Space group
Coxeter notation
[6,3,2,∞]
[3[3],2,∞]
[(3[3])+,2,∞]
Dual Hexagonal prismatic honeycomb
Properties vertex-transitive

The triangular prismatic honeycombortriangular prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed entirely of triangular prisms.

It is constructed from a triangular tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

It consists of 1 + 6 + 1 = 8 edges meeting at a vertex, There are 6 triangular prism cells meeting at an edge and faces are shared between 2 cells.

Related honeycombs[edit]

Hexagonal prismatic honeycomb[edit]

Hexagonal prismatic honeycomb
Type Uniform honeycomb
Schläfli symbols {6,3}×{∞} or t0,1,3{6,3,2,∞}
Coxeter diagrams


Cell types 4.4.6
Vertex figure triangular bipyramid
Space group
Coxeter notation
[6,3,2,∞]
[3[3],2,∞]
Dual Triangular prismatic honeycomb
Properties vertex-transitive

The hexagonal prismatic honeycomborhexagonal prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space made up of hexagonal prisms.

It is constructed from a hexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.

This honeycomb can be alternated into the gyrated tetrahedral-octahedral honeycomb, with pairs of tetrahedra existing in the alternated gaps (instead of a triangular bipyramid).

There are 1 + 3 + 1 = 5 edges meeting at a vertex, 3 Hexagonal Prism cells meeting at an edge, and faces are shared between 2 cells.


Trihexagonal prismatic honeycomb[edit]

Trihexagonal prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol r{6,3}x{∞} or t1,3{6,3}x{∞}
Vertex figure Rectangular bipyramid
Coxeter diagram
Space group
Coxeter notation
[6,3,2,∞]
Dual Rhombille prismatic honeycomb
Properties vertex-transitive

The trihexagonal prismatic honeycombortrihexagonal prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of hexagonal prisms and triangular prisms in a ratio of 1:2.

It is constructed from a trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Truncated hexagonal prismatic honeycomb[edit]

Truncated hexagonal prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol t{6,3}×{∞} or t0,1,3{6,3,2,∞}
Coxeter diagram
Cell types 4.4.12
3.4.4
Face types {3}, {4}, {12}
Edge figures Square,
Isosceles triangle
Vertex figure Triangular bipyramid
Space group
Coxeter notation
[6,3,2,∞]
Dual Triakis triangular prismatic honeycomb
Properties vertex-transitive

The truncated hexagonal prismatic honeycombortomo-trihexagonal prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of dodecagonal prisms, and triangular prisms in a ratio of 1:2.

It is constructed from a truncated hexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Rhombitrihexagonal prismatic honeycomb[edit]

Rhombitrihexagonal prismatic honeycomb
Type Uniform honeycomb
Vertex figure Trapezoidal bipyramid
Schläfli symbol rr{6,3}×{∞} or t0,2,3{6,3,2,∞}
s2{3,6}×{∞}
Coxeter diagram
Space group
Coxeter notation
[6,3,2,∞]
Dual Deltoidal trihexagonal prismatic honeycomb
Properties vertex-transitive

The rhombitrihexagonal prismatic honeycomborrhombitrihexagonal prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of hexagonal prisms, cubes, and triangular prisms in a ratio of 1:3:2.

It is constructed from a rhombitrihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Truncated trihexagonal prismatic honeycomb[edit]

Truncated trihexagonal prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol tr{6,3}×{∞} or t0,1,2,3{6,3,2,∞}
Coxeter diagram
Space group
Coxeter notation
[6,3,2,∞]
Vertex figure irr. triangular bipyramid
Dual Kisrhombille prismatic honeycomb
Properties vertex-transitive

The truncated trihexagonal prismatic honeycombortomo-trihexagonal prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of dodecagonal prisms, hexagonal prisms, and cubes in a ratio of 1:2:3.

It is constructed from a truncated trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Snub trihexagonal prismatic honeycomb[edit]

Snub trihexagonal prismatic honeycomb
Type Uniform honeycomb
Schläfli symbol sr{6,3}×{∞}
Coxeter diagram
Symmetry [(6,3)+,2,∞]
Dual Floret pentagonal prismatic honeycomb
Properties vertex-transitive

The snub trihexagonal prismatic honeycomborsimo-trihexagonal prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of hexagonal prisms and triangular prisms in a ratio of 1:8.

It is constructed from a snub trihexagonal tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Snub trihexagonal antiprismatic honeycomb[edit]

Snub trihexagonal antiprismatic honeycomb
Type Convex honeycomb
Schläfli symbol ht0,1,2,3{6,3,2,∞}
Coxeter-Dynkin diagram
Cells hexagonal antiprism
octahedron
tetrahedron
Vertex figure
Symmetry [6,3,2,∞]+
Properties vertex-transitive

Asnub trihexagonal antiprismatic honeycomb can be constructed by alternation of the truncated trihexagonal prismatic honeycomb, although it can not be made uniform, but it can be given Coxeter diagram: and has symmetry [6,3,2,∞]+. It makes hexagonal antiprisms from the dodecagonal prisms, octahedra (as triangular antiprisms) from the hexagonal prisms, tetrahedra (as tetragonal disphenoids) from the cubes, and two tetrahedra from the triangular bipyramids.


Elongated triangular prismatic honeycomb[edit]

Elongated triangular prismatic honeycomb
Type Uniform honeycomb
Schläfli symbols {3,6}:e×{∞}
s{∞}h1{∞}×{∞}
Coxeter diagrams
Space group
Coxeter notation
[∞,2+,∞,2,∞]
[(∞,2)+,∞,2,∞]
Dual Prismatic pentagonal prismatic honeycomb
Properties vertex-transitive

The elongated triangular prismatic honeycomborelongated antiprismatic prismatic cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

It is constructed from an elongated triangular tiling extruded into prisms.

It is one of 28 convex uniform honeycombs.


Gyrated triangular prismatic honeycomb[edit]

Gyrated triangular prismatic honeycomb
Type Convex uniform honeycomb
Schläfli symbols {3,6}:g×{∞}
{4,4}f{∞}
Cell types (3.4.4)
Face types {3}, {4}
Vertex figure
Space group [4,(4,2+,∞,2+)] ?
Dual ?
Properties vertex-transitive

The gyrated triangular prismatic honeycomborparasquare fastigial cellulation is a space-filling tessellation (orhoneycomb) in Euclidean 3-space made up of triangular prisms. It is vertex-uniform with 12 triangular prisms per vertex.

It can be seen as parallel planes of square tiling with alternating offsets caused by layers of paired triangular prisms. The prisms in each layer are rotated by a right angle to those in the next layer.

It is one of 28 convex uniform honeycombs.

Pairs of triangular prisms can be combined to create gyrobifastigium cells. The resulting honeycomb is closely related but not equivalent: it has the same vertices and edges, but different two-dimensional faces and three-dimensional cells.


Gyroelongated triangular prismatic honeycomb[edit]

Gyroelongated triangular prismatic honeycomb
Type Uniform honeycomb
Schläfli symbols {3,6}:ge×{∞}
{4,4}f1{∞}
Vertex figure
Space group
Coxeter notation
[4,(4,2+,∞,2+)] ?
Dual -
Properties vertex-transitive

The gyroelongated triangular prismatic honeycomborelongated parasquare fastigial cellulation is a uniform space-filling tessellation (orhoneycomb) in Euclidean 3-space. It is composed of cubes and triangular prisms in a ratio of 1:2.

It is created by alternating layers of cubes and triangular prisms, with the prisms alternating in orientation by 90 degrees.

It is related to the elongated triangular prismatic honeycomb which has the triangular prisms with the same orientation.

This is related to a space-filling polyhedron, elongated gyrobifastigium, where cube and two opposite triangular prisms are augmented together as a single polyhedron:

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Triangular_prismatic_honeycomb&oldid=1224271739#Gyrated_triangular_prismatic_honeycomb"

Category: 
Honeycombs (geometry)
Hidden category: 
CS1: long volume value
 



This page was last edited on 17 May 2024, at 09:44 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki