Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Classification  



1.1  Uniform 3-honeycombs  





1.2  Space-filling polyhedra  





1.3  Other honeycombs with two or more polyhedra  





1.4  Non-convex 3-honeycombs  





1.5  Hyperbolic honeycombs  







2 Duality of 3-honeycombs  





3 Self-dual honeycombs  





4 See also  





5 References  





6 Further reading  





7 External links  














Honeycomb (geometry)






Català
Corsu
Deutsch
Español
Esperanto
Français

Italiano

Română
Русский
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Cubic honeycomb

Ingeometry, a honeycomb is a space fillingorclose packingofpolyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tilingortessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is possible to fill the plane with polygons which do not meet at their corners, for example using rectangles, as in a brick wall pattern: this is not a proper tiling because corners lie part way along the edge of a neighbouring polygon. Similarly, in a proper honeycomb, there must be no edges or vertices lying part way along the face of a neighbouring cell. Interpreting each brick face as a hexagon having two interior angles of 180 degrees allows the pattern to be considered as a proper tiling. However, not all geometers accept such hexagons.

Classification[edit]

There are infinitely many honeycombs, which have only been partially classified. The more regular ones have attracted the most interest, while a rich and varied assortment of others continue to be discovered.

The simplest honeycombs to build are formed from stacked layers or slabsofprisms based on some tessellations of the plane. In particular, for every parallelepiped, copies can fill space, with the cubic honeycomb being special because it is the only regular honeycomb in ordinary (Euclidean) space. Another interesting family is the Hill tetrahedra and their generalizations, which can also tile the space.

Uniform 3-honeycombs[edit]

A 3-dimensional uniform honeycomb is a honeycomb in 3-space composed of uniform polyhedral cells, and having all vertices the same (i.e., the group of [isometries of 3-space that preserve the tiling] is transitive on vertices). There are 28 convex examples in Euclidean 3-space,[1] also called the Archimedean honeycombs.

A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform. However, there is just one regular honeycomb in Euclidean 3-space, the cubic honeycomb. Two are quasiregular (made from two types of regular cells):

Type Regular cubic honeycomb Quasiregular honeycombs
Cells Cubic Octahedra and tetrahedra
Slab layer

The tetrahedral-octahedral honeycomb and gyrated tetrahedral-octahedral honeycombs are generated by 3 or 2 positions of slab layer of cells, each alternating tetrahedra and octahedra. An infinite number of unique honeycombs can be created by higher order of patterns of repeating these slab layers.

Space-filling polyhedra[edit]

A honeycomb having all cells identical within its symmetries is said to be cell-transitiveorisochoric. In the 3-dimensional euclidean space, a cell of such a honeycomb is said to be a space-filling polyhedron.[2]Anecessary condition for a polyhedron to be a space-filling polyhedron is that its Dehn invariant must be zero,[3][4] ruling out any of the Platonic solids other than the cube.

Five space-filling polyhedra can tessellate 3-dimensional euclidean space using translations only. They are called parallelohedra:

  1. Cubic honeycomb (or variations: cuboid, rhombic hexahedronorparallelepiped)
  2. Hexagonal prismatic honeycomb[5]
  3. Rhombic dodecahedral honeycomb
  4. Elongated dodecahedral honeycomb[6]
  5. Bitruncated cubic honeycombortruncated octahedra[7]

cubic honeycomb

Hexagonal prismatic honeycomb

Rhombic dodecahedra

Elongated dodecahedra

Truncated octahedra
Cube
(parallelepiped)
Hexagonal prism Rhombic dodecahedron Elongated dodecahedron Truncated octahedron
3 edge-lengths 3+1 edge-lengths 4 edge-lengths 4+1 edge-lengths 6 edge-lengths

Other known examples of space-filling polyhedra include:

Other honeycombs with two or more polyhedra[edit]

Sometimes, two [11] or more different polyhedra may be combined to fill space. Besides many of the uniform honeycombs, another well known example is the Weaire–Phelan structure, adopted from the structure of clathrate hydrate crystals [12]

Weaire–Phelan structure (with two types of cells)
The periodic unit of the Weaire–Phelan structure.
P8 tiling (with left and right-handed cells)
A honeycomb by left and right-handed versions of the same polyhedron.

Non-convex 3-honeycombs[edit]

Documented examples are rare. Two classes can be distinguished:

Hyperbolic honeycombs[edit]

In 3-dimensional hyperbolic space, the dihedral angle of a polyhedron depends on its size. The regular hyperbolic honeycombs thus include two with four or five dodecahedra meeting at each edge; their dihedral angles thus are π/2 and 2π/5, both of which are less than that of a Euclidean dodecahedron. Apart from this effect, the hyperbolic honeycombs obey the same topological constraints as Euclidean honeycombs and polychora.

The 4 compact and 11 paracompact regular hyperbolic honeycombs and many compact and paracompact uniform hyperbolic honeycombs have been enumerated.

Four regular compact honeycombs in H3

{5,3,4}

{4,3,5}

{3,5,3}

{5,3,5}
11 paracompact regular honeycombs

{6,3,3}

{6,3,4}

{6,3,5}

{6,3,6}

{4,4,3}

{4,4,4}

{3,3,6}

{4,3,6}

{5,3,6}

{3,6,3}

{3,4,4}

Duality of 3-honeycombs[edit]

For every honeycomb there is a dual honeycomb, which may be obtained by exchanging:

cells for vertices.
faces for edges.

These are just the rules for dualising four-dimensional 4-polytopes, except that the usual finite method of reciprocation about a concentric hypersphere can run into problems.

The more regular honeycombs dualise neatly:

Self-dual honeycombs[edit]

Honeycombs can also be self-dual. All n-dimensional hypercubic honeycombs with Schläfli symbols {4,3n−2,4}, are self-dual.

See also[edit]

References[edit]

  1. ^ Grünbaum (1994). "Uniform tilings of 3-space". Geombinatorics 4(2)
  • ^ Weisstein, Eric W. "Space-filling polyhedron". MathWorld.
  • ^ Debrunner, Hans E. (1980), "Über Zerlegungsgleichheit von Pflasterpolyedern mit Würfeln", Archiv der Mathematik (in German), 35 (6): 583–587, doi:10.1007/BF01235384, MR 0604258, S2CID 121301319.
  • ^ Lagarias, J. C.; Moews, D. (1995), "Polytopes that fill and scissors congruence", Discrete and Computational Geometry, 13 (3–4): 573–583, doi:10.1007/BF02574064, MR 1318797.
  • ^ [1] Uniform space-filling using triangular, square, and hexagonal prisms
  • ^ [2] Uniform space-filling using only rhombo-hexagonal dodecahedra
  • ^ [3] Uniform space-filling using only truncated octahedra
  • ^ John Conway (2003-12-22). "Voronoi Polyhedron. geometry.puzzles". Newsgroupgeometry.puzzles. Usenet: Pine.LNX.4.44.0312221226380.25139-100000@fine318a.math.Princeton.EDU.
  • ^ X. Qian, D. Strahs and T. Schlick, J. Comput. Chem. 22(15) 1843–1850 (2001)
  • ^ [4] O. Delgado-Friedrichs and M. O'Keeffe. Isohedral simple tilings: binodal and by tiles with <16 faces. Acta Crystallogr. (2005) A61, 358-362
  • ^ [5] Archived 2015-06-30 at the Wayback Machine Gabbrielli, Ruggero. A thirteen-sided polyhedron which fills space with its chiral copy.
  • ^ Pauling, Linus. The Nature of the Chemical Bond. Cornell University Press, 1960
  • ^ Inchbald, Guy (July 1997), "The Archimedean honeycomb duals", The Mathematical Gazette, 81 (491): 213–219, doi:10.2307/3619198, JSTOR 3619198.
  • Further reading[edit]

    External links[edit]

  • t
  • e
  • Space Family / /
    E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
    E3 Uniform convex honeycomb {3[4]} δ4 4 4
    E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
    E5 Uniform 5-honeycomb {3[6]} δ6 6 6
    E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
    E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
    E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
    E9 Uniform 9-honeycomb {3[10]} δ10 10 10
    E10 Uniform 10-honeycomb {3[11]} δ11 11 11
    En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Honeycomb_(geometry)&oldid=1214263198"

    Categories: 
    Honeycombs (geometry)
    Space-filling polyhedra
    Polytopes
    Hidden categories: 
    CS1 German-language sources (de)
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Pages using multiple image with auto scaled images
    Commons category link is on Wikidata
     



    This page was last edited on 17 March 2024, at 22:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki