Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Projection and pixelisation  





2 Usage and alternatives  





3 See also  





4 References  





5 External links  














HEALPix







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


HEALPix H=4, K=3 projection of the world. The lines on the map are a graticule of latitudes and longitudes.
The grid used by HEALPix and its subdivision of the sphere, in four different grid refinements. Notice the similarity between the coarsest grid and the rhombic dodecahedron.

HEALPix (sometimes written as Healpix), an acronym for Hierarchical Equal Area isoLatitude Pixelisation of a 2-sphere, is an algorithm for pixelisation of the 2-sphere based on subdivision of a distorted rhombic dodecahedron, and the associated class of map projections.[1] The pixelisation algorithm was devised in 1997 by Krzysztof M. Górski at the Theoretical Astrophysics Center in Copenhagen, Denmark,[2] and first published as a preprint in 1998.[3][4]

Projection and pixelisation[edit]

The HEALPix projection is a general class of spherical projections, sharing several key properties, which map the 2-sphere to the Euclidean plane.[1] Any of these can be followed by partitioning (pixelising) the resulting region of the 2-plane. In particular, when one of these projections (the H=4, K=3 HEALPix projection) is followed by a pixelisation of the 2-plane, the result is generally known as the HEALPix pixelisation,[3][4] which is widely used in physical cosmology for maps of the cosmic microwave background. This pixelisation can be thought of as mapping the sphere to twelve square facets (diamonds) on the plane followed by the binary division of these facets into pixels,[5][6][1] though it can be derived without using the projection.[3][4][7] The associated software package HEALPix implements the algorithm.[3][7] The HEALPix projection (as a general class of spherical projections) is represented by the keyword HPX in the FITS standard for writing astronomical data files. It was approved as part of the official FITS World Coordinate System (WCS) by the International Astronomical Union FITS Working Group on April 26, 2006.[8]

The spherical projection combines a cylindrical equal area projection, the Lambert cylindrical equal-area projection, for the equatorial regions of the sphere and a pseudocylindrical equal area projection, an interrupted Collignon projection, for the polar regions.[1]

At a given level in the hierarchy the pixels are of equal area (which is done by bisecting the square in the case of the H=4, K=3 projection) and their centers lie on a discrete number of circles of latitude, with equal spacing on each circle. The scheme has a number of mathematical properties which make it efficient for certain computations, e.g. spherical harmonic transforms. In the case of the H=4, K=3 projection, the pixels are squares in the plane (which can be inversely projected back to quadrilaterals with non-geodesic sides on the 2-sphere) and every vertex joins four pixels, with the exception of eight vertices which each join only three pixels.

The latitude of transition between equatorial-orthogonal and polar-convergent longitude lines has been selected to allow the folding of the projection into a perfect cube — "cubing the sphere"; indeed in this way the Arctic Circle becomes a square.

Usage and alternatives[edit]

The pixelisation related to the H=4, K=3 projection has become widely used in cosmology for storing and manipulating maps of the cosmic microwave background.

Gaia mission uses HEALPix as the basis for source identification.[9]

An alternative hierarchical grid is the Hierarchical Triangular Mesh (HTM).[10][11] The pixels at a given level in the hierarchy are of similar but not identical size. The scheme is good at representing complex shapes because the boundaries are all segments of circles of the sphere. Another alternative hierarchical grid is the Quadrilateralized Spherical Cube.

The 12 "base resolution pixels" of H=4, K=3 HEALPix projection may be thought of as the facets of a rhombic dodecahedron.

The H=6 HEALPix has similarities to another alternative grid based on the icosahedron.[12]

See also[edit]

References[edit]

  1. ^ a b c d Calabretta, Mark R.; Roukema, Boudewijn F. (2007). "Mapping on the HEALPix grid". MNRAS. 381 (2). Oxford University Press: 865–872. Bibcode:2007MNRAS.381..865C. doi:10.1111/j.1365-2966.2007.12297.x.
  • ^ "HEALPix Background - History". healpix.jpl.nasa.gov. Retrieved 2019-06-08.
  • ^ a b c d Górski, Krzysztof M.; Hivon, Éric; Wandelt, Benjamin D. (1999). "Analysis Issues for Large CMB Data Sets". Evolution of Large Scale Structure: From Recombination to Garching. Proceedings of the MAP/ESO Cosmology Conference 'Evolution of Large-Scale Structure'. Netherlands: PrintPartners Ipskamp. p. 37. arXiv:astro-ph/9812350. Bibcode:1999elss.conf...37G.
  • ^ a b c Górski, Krzysztof M.; Wandelt, Benjamin D.; Hansen, Frode K.; Hivon, Éric; Banday, Anthony J. (1999-05-21). "The HEALPix Primer". arXiv:astro-ph/9905275.
  • ^ Roukema, Boudewijn F.; Lew, Bartosz (2004-09-08). "A Solution to the Isolatitude, Equi-area, Hierarchical Pixel-Coordinate System". Public Draft. arXiv:astro-ph/0409533. Bibcode:2004astro.ph..9533R. Archived from the original on 2019-08-04. Retrieved 2004-09-08.
  • ^ Roukema, Boudewijn F.; Lew, Bartosz (2004-09-22). "A Solution to the Isolatitude, Equi-area, Hierarchical Pixel-Coordinate System". arXiv:astro-ph/0409533.
  • ^ a b Górski, Krzysztof M.; Hivon, Éric; Banday, Anthony J.; Hansen, Frode K.; Wandelt, Benjamin D.; Reinecke, M.; Bartelmann, M. (2005). "HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere". Astrophysical Journal. 622 (2): 759–771. arXiv:astro-ph/0409513. Bibcode:2005ApJ...622..759G. doi:10.1086/427976. S2CID 18743679.
  • ^ Pence, William D. "FITS World Coordinate System (WCS)". High Energy Astrophysics Science Archive Research Center (HEASARC). Archived from the original on 2019-08-04. Retrieved 2007-01-09.
  • ^ "Gaia Data Release 1: Datamodel description Documentation release 1.2". gea.esac.esa.int. Retrieved 2021-05-31.
  • ^ "SkyServer.org - HTM: Hierarchical Triangular Mesh". SkyServer. June 6, 2006. Retrieved 2007-02-05.
  • ^ Szalay, Alex; Jim Gray; Gyorgy Fekete; Peter Kunszt; Peter Kukol; Ani Thakar (September 2005). "Indexing the Sphere with the Hierarchical Triangular Mesh". Microsoft Research. arXiv:cs/0701164. Bibcode:2007cs........1164S. Retrieved 2007-02-05.
  • ^ Tegmark, Max. "Welcome to the icosahedron home page". space.mit.edu.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=HEALPix&oldid=1192623422"

    Category: 
    Map projections
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 30 December 2023, at 11:45 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki