Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The partition function of the hard hexagon model  





2 Solution  





3 Related models  





4 References  





5 External links  














Hard hexagon model







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Instatistical mechanics, the hard hexagon model is a 2-dimensional lattice model of a gas, where particles are allowed to be on the vertices of a triangular lattice but no two particles may be adjacent.

The model was solved by Baxter (1980), who found that it was related to the Rogers–Ramanujan identities.

The partition function of the hard hexagon model[edit]

The hard hexagon model occurs within the framework of the grand canonical ensemble, where the total number of particles (the "hexagons") is allowed to vary naturally, and is fixed by a chemical potential. In the hard hexagon model, all valid states have zero energy, and so the only important thermodynamic control variable is the ratio of chemical potential to temperature μ/(kT). The exponential of this ratio, z = exp(μ/(kT)) is called the activity and larger values correspond roughly to denser configurations.

For a triangular lattice with N sites, the grand partition functionis

where g(n, N) is the number of ways of placing n particles on distinct lattice sites such that no 2 are adjacent. The function κ is defined by

so that log(κ) is the free energy per unit site. Solving the hard hexagon model means (roughly) finding an exact expression for κ as a function of z.

The mean density ρ is given for small zby

The vertices of the lattice fall into 3 classes numbered 1, 2, and 3, given by the 3 different ways to fill space with hard hexagons. There are 3 local densities ρ1, ρ2, ρ3, corresponding to the 3 classes of sites. When the activity is large the system approximates one of these 3 packings, so the local densities differ, but when the activity is below a critical point the three local densities are the same. The critical point separating the low-activity homogeneous phase from the high-activity ordered phase is with golden ratio φ. Above the critical point the local densities differ and in the phase where most hexagons are on sites of type 1 can be expanded as

Solution[edit]

The solution is given for small values of z < zcby

where

For large z > zc the solution (in the phase where most occupied sites have type 1) is given by

The functions G and H turn up in the Rogers–Ramanujan identities, and the function Q is the Euler function, which is closely related to the Dedekind eta function. If x = e2πiτ, then x−1/60G(x), x11/60H(x), x−1/24P(x), z, κ, ρ, ρ1, ρ2, and ρ3 are modular functions of τ, while x1/24Q(x) is a modular form of weight 1/2. Since any two modular functions are related by an algebraic relation, this implies that the functions κ, z, R, ρ are all algebraic functions of each other (of quite high degree) (Joyce 1988). In particular, the value of κ(1), which Eric Weisstein dubbed the hard hexagon entropy constant (Weisstein), is an algebraic number of degree 24 equal to 1.395485972... (OEISA085851).

Related models[edit]

The hard hexagon model can be defined similarly on the square and honeycomb lattices. No exact solution is known for either of these models, but the critical point zc is near 3.7962±0.0001 for the square lattice and 7.92±0.08 for the honeycomb lattice; κ(1) is approximately 1.503048082... (OEISA085850) for the square lattice and 1.546440708... for the honeycomb lattice (Baxter 1999).

References[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Hard_hexagon_model&oldid=1175200304"

Categories: 
Exactly solvable models
Statistical mechanics
Lattice models
Modular forms
Algebraic numbers
 



This page was last edited on 13 September 2023, at 11:52 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki