Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proof  



1.1  An application  







2 See also  





3 References  














HardyLittlewood inequality






Français
Italiano

Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematical analysis, the Hardy–Littlewood inequality, named after G. H. Hardy and John Edensor Littlewood, states that if and are nonnegative measurable real functions vanishing at infinity that are defined on -dimensional Euclidean space , then

where and are the symmetric decreasing rearrangementsof and , respectively.[1][2]

The decreasing rearrangement of is defined via the property that for all the two super-level sets

and

have the same volume (-dimensional Lebesgue measure) and is a ball in centered at , i.e. it has maximal symmetry.

Proof[edit]

The layer cake representation[1][2] allows us to write the general functions and in the form

and

where equals for and otherwise. Analogously, equals for and otherwise.

Now the proof can be obtained by first using Fubini's theorem to interchange the order of integration. When integrating with respect to the conditions and the indicator functions and appear with the superlevel sets and as introduced above:

Denoting by the -dimensional Lebesgue measure we continue by estimating the volume of the intersection by the minimum of the volumes of the two sets. Then, we can use the equality of the volumes of the superlevel sets for the rearrangements:

Now, we use that the superlevel sets and are balls in centered at , which implies that is exactly the smaller one of the two balls:

The last identity follows by reversing the initial five steps that even work for general functions. This finishes the proof.

An application[edit]

Let random variable is Normally distributed with mean and finite non-zero variance , then using the Hardy–Littlewood inequality, it can be proved that for the reciprocal moment for the absolute value of is

[3]


The technique that is used to obtain the above property of the Normal distribution can be utilized for other unimodal distributions.

See also[edit]

References[edit]

  1. ^ a b Lieb, Elliott; Loss, Michael (2001). Analysis. Graduate Studies in Mathematics. Vol. 14 (2nd ed.). American Mathematical Society. ISBN 978-0821827833.
  • ^ a b Burchard, Almut. A Short Course on Rearrangement Inequalities (PDF).
  • ^ Pal, Subhadip; Khare, Kshitij (2014). "Geometric ergodicity for Bayesian shrinkage models". Electronic Journal of Statistics. 8 (1): 604–645. doi:10.1214/14-EJS896. ISSN 1935-7524.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Hardy–Littlewood_inequality&oldid=1221082229"

    Category: 
    Inequalities
    Hidden category: 
    Articles containing proofs
     



    This page was last edited on 27 April 2024, at 19:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki